【題目】2019年某開(kāi)發(fā)區(qū)一家汽車生產(chǎn)企業(yè)計(jì)劃引進(jìn)一批新能源汽車制造設(shè)備,通過(guò)市場(chǎng)分析,全年需投入固定成本3000萬(wàn)元,每生產(chǎn)x(百輛),需另投入成本萬(wàn)元,且,由市場(chǎng)調(diào)研知,每輛車售價(jià)6萬(wàn)元,且全年內(nèi)生產(chǎn)的車輛當(dāng)年能全部銷售完.
(1)求出2019年的利潤(rùn)(萬(wàn)元)關(guān)于年產(chǎn)量x(百輛)的函數(shù)關(guān)系式;(利潤(rùn)=銷售額成本)
(2)2019年產(chǎn)量為多少(百輛)時(shí),企業(yè)所獲利潤(rùn)最大?并求出最大利潤(rùn).
【答案】(1);(2)2019年年產(chǎn)量為100百輛時(shí),企業(yè)所獲利潤(rùn)最大,最大利潤(rùn)為5800萬(wàn)元.
【解析】
(1)先閱讀題意,再分當(dāng)時(shí),當(dāng)時(shí),求函數(shù)解析式即可;
(2)當(dāng)時(shí),利用配方法求二次函數(shù)的最大值,當(dāng)時(shí),利用均值不等式求函數(shù)的最大值,一定要注意取等的條件,再綜合求分段函數(shù)的最大值即可.
解:(1)由已知有當(dāng)時(shí),
當(dāng)時(shí),,
即,
(2)當(dāng)時(shí),,
當(dāng)時(shí),取最大值,
當(dāng)時(shí),,
當(dāng)且僅當(dāng),即時(shí)取等號(hào),
又
故2019年年產(chǎn)量為100百輛時(shí),企業(yè)所獲利潤(rùn)最大,最大利潤(rùn)為5800萬(wàn)元.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在四棱錐P﹣ABCD中,PA⊥平面ABCD,AC⊥AD,AB⊥BC,∠BAC=45°,PA=AD=2,AC=1.
(1)證明:PC⊥AD;
(2)求二面角A﹣PC﹣D的正弦值;
(3)設(shè)E為棱PA上的點(diǎn),滿足異面直線BE與CD所成的角為30°,求AE的長(zhǎng).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在四棱錐中,底面為直角梯形,,和均為等邊三角形,且平面平面,點(diǎn)為中點(diǎn).
(Ⅰ)求證:平面;
(Ⅱ)若的面積為,求三棱錐的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)/(x.
(1)當(dāng)時(shí),求在最小值;
(2)若存在單調(diào)遞減區(qū)間,求的取值范圍;
(3)求證:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】2018年6月14日,第二十一屆世界杯尼球賽在俄羅斯拉開(kāi)了帷幕,某大學(xué)在二年級(jí)作了問(wèn)卷調(diào)查,從該校二年級(jí)學(xué)生中抽取了人進(jìn)行調(diào)查,其中女生中對(duì)足球運(yùn)動(dòng)有興趣的占,而男生有人表示對(duì)足球運(yùn)動(dòng)沒(méi)有興趣.
(1)完成列聯(lián)表,并回答能否有的把握認(rèn)為“對(duì)足球是否有興趣與性別有關(guān)”?
有興趣 | 沒(méi)有興趣 | 合計(jì) | |
男 | |||
女 | |||
合計(jì) |
(2)若將頻率視為概率,現(xiàn)再?gòu)脑撔6昙?jí)全體學(xué)生中,采用隨機(jī)抽樣的方法每飲抽取名學(xué)生,抽取次,記被抽取的名學(xué)生中對(duì)足球有興趣的人數(shù)為,若每次抽取的結(jié)果是相互獨(dú)立的,求的分布列和數(shù)學(xué)期望.
附:
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某企業(yè)響應(yīng)省政府號(hào)召,對(duì)現(xiàn)有設(shè)備進(jìn)行改造,為了分析設(shè)備改造前后的效果,現(xiàn)從設(shè)備改造前后生產(chǎn)的大量產(chǎn)品中各抽取了件產(chǎn)品作為樣本,檢測(cè)一項(xiàng)質(zhì)量指標(biāo)值,若該項(xiàng)質(zhì)量指標(biāo)值落在內(nèi)的產(chǎn)品視為合格品,否則為不合格品.如圖是設(shè)備改造前的樣本的頻率分布直方圖,表是設(shè)備改造后的樣本的頻數(shù)分布表.
表:設(shè)備改造后樣本的頻數(shù)分布表
質(zhì)量指標(biāo)值 | ||||||
頻數(shù) |
(1)完成下面的列聯(lián)表,并判斷是否有的把握認(rèn)為該企業(yè)生產(chǎn)的這種產(chǎn)品的質(zhì)量指標(biāo)值與設(shè)備改造有關(guān);
設(shè)備改造前 | 設(shè)備改造后 | 合計(jì) | |
合格品 | |||
不合格品 | |||
合計(jì) |
(2)根據(jù)頻率分布直方圖和表 提供的數(shù)據(jù),試從產(chǎn)品合格率的角度對(duì)改造前后設(shè)備的優(yōu)劣進(jìn)行比較;
(3)企業(yè)將不合格品全部銷毀后,根據(jù)客戶需求對(duì)合格品進(jìn)行登記細(xì)分,質(zhì)量指標(biāo)值落在內(nèi)的定為一等品,每件售價(jià)元;質(zhì)量指標(biāo)值落在或內(nèi)的定為二等品,每件售價(jià)元;其它的合格品定為三等品,每件售價(jià)元.根據(jù)表的數(shù)據(jù),用該組樣本中一等品、二等品、三等品各自在合格品中的頻率代替從所有產(chǎn)品中抽到一件相應(yīng)等級(jí)產(chǎn)品的概率.現(xiàn)有一名顧客隨機(jī)購(gòu)買兩件產(chǎn)品,設(shè)其支付的費(fèi)用為(單位:元),求的分布列和數(shù)學(xué)期望.
附:
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系中,直線的參數(shù)方程為(為參數(shù)),以原點(diǎn)為極點(diǎn),軸的非負(fù)半軸為極軸且取相同的單位長(zhǎng)度建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.
(1)求直線的普通方程及曲線的直角坐標(biāo)方程;
(2)若直線與曲線交于,兩點(diǎn),求.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在邊長(zhǎng)為6的正方形中,弧的圓心為,過(guò)弧上的點(diǎn)作弧的切線,與、分別相交于點(diǎn)、,的延長(zhǎng)線交邊于點(diǎn).
(1)設(shè),,求與之間的函數(shù)解析式,并寫出函數(shù)定義域;
(2)當(dāng)時(shí),求的長(zhǎng).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】足球,有“世界第一運(yùn)動(dòng)的美譽(yù),是全球體育界最具影響力的單項(xiàng)體育運(yùn)動(dòng)之一.足球傳球是足球運(yùn)動(dòng)技術(shù)之一,是比賽中組織進(jìn)攻、組織戰(zhàn)術(shù)配合和進(jìn)行射門的主要手段.足球截球也是足球運(yùn)動(dòng)技術(shù)的一種,是將對(duì)方控制或傳出的球占為己有,或破壞對(duì)方對(duì)球的控制的技術(shù),是比賽中由守轉(zhuǎn)攻的主要手段.這兩種運(yùn)動(dòng)技術(shù)都需要球運(yùn)動(dòng)員的正確判斷和選擇.現(xiàn)有甲、乙兩隊(duì)進(jìn)行足球友誼賽,A、B兩名運(yùn)動(dòng)員是甲隊(duì)隊(duì)員,C是乙隊(duì)隊(duì)員,B在A的正西方向,A和B相距20m,C在A的正北方向,A和C相距14m.現(xiàn)A沿北偏西60°方向水平傳球,球速為10m/s,同時(shí)B沿北偏西30°方向以10m/s的速度前往接球,C同時(shí)也以10m/s的速度前去截球.假設(shè)球與B、C都在同一平面運(yùn)動(dòng),且均保持勻速直線運(yùn)動(dòng).
(1)若C沿南偏西60°方向前去截球,試判斷B能否接到球?請(qǐng)說(shuō)明理由.
(2)若C改變(1)的方向前去截球,試判斷C能否球成功?請(qǐng)說(shuō)明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com