【答案】
分析:(1)(3)中證明線線垂直及線面垂直,可以綜合線線、線面、面面垂直的性質(zhì)及判定定理進(jìn)行解答,也可利用三垂線定理進(jìn)行解答
(2)求二面角的大小,一般先作出二面角的平面角.再利用解三角形的辦法求解,對(duì)于本題,也可以建立空間坐標(biāo)系,利用空間向量進(jìn)行求解和證明.
解答:解法一:
證明:(Ⅰ)∵E、F分別是AB、PB的中點(diǎn),
∴EF∥PA.
∵ABCD是正方形,
∴AD⊥CD.
又PD⊥底面ABCD,
∴AD是斜線PA在平面ABCD內(nèi)的射影.
∴PA⊥CD.
∴EF⊥CD
(Ⅱ)連接AC交BD于O,過(guò)O作OK⊥DE于K,連接OF、FK.
∵O,F(xiàn)分別為BD,PB中點(diǎn),
∴OF∥PD.
∵PD⊥底面ABCD,
∴OF⊥底面ABCD.
∴OK是斜線FK在平面ABCD內(nèi)的射影.
∴FK⊥DE.
∴∠FKO是二面角F-DE-B的平面角
經(jīng)計(jì)算得:
,
.
∴
.
即二面角F-DE-B的大小為
(Ⅲ)取PC的中點(diǎn)H,連接DH.
∵PD=DC,
∴DH⊥PC.
又易證BC⊥平面PDC,
∴DH⊥BC.
又PC∩BC=C,
∴DH⊥平面PBC
取AD中點(diǎn)G,連接GF、FH.
∴FH∥BC∥DG,且FH=DG.
∴四邊形DGFH為平行四邊形.
∴DH∥GF.
∴GF⊥平面PCB.
即當(dāng)G是AD的中點(diǎn)時(shí),GF⊥平面PCB
解法二:
以DA、DC、DP所在直線為x軸、y軸、z軸建立空間直角坐標(biāo)系(如圖),
則D(0,0,0)、A(1,0,0)、B(1,1,0)、C(0,1,0)、
、
、P(0,0,1).
(Ⅰ)∵
,
,
∴
.
∴EF⊥CD
(Ⅱ)∵PD⊥底面ABCD,
∴平面BDE的法向量為
設(shè)平面DEF的法向量為
由
得
即
令x=1,則y=-2,z=1.
∴
∴
.
即二面角F-DE-B的大小為
(Ⅲ)設(shè)G(m,0,n),則G∈平面PAD.
∴
.
由
,得
.由
,得n=0.
∴G點(diǎn)坐標(biāo)為
,即G為AD中點(diǎn)時(shí),GF⊥平面PCB
點(diǎn)評(píng):線線垂直可由線面垂直的性質(zhì)推得,直線和平面垂直,這條直線就垂直于平面內(nèi)所有直線,這是尋找線線垂直的重要依據(jù).垂直問(wèn)題的證明,其一般規(guī)律是“由已知想性質(zhì),由求證想判定”,也就是說(shuō),根據(jù)已知條件去思考有關(guān)的性質(zhì)定理;根據(jù)要求證的結(jié)論去思考有關(guān)的判定定理,往往需要將分析與綜合的思路結(jié)合起來(lái).證明線面垂直的方法:證明一個(gè)面過(guò)另一個(gè)面的垂線,將證明面面垂直轉(zhuǎn)化為證明線面垂直,一般先從現(xiàn)有直線中尋找,若圖中不存在這樣的直線,則借助中點(diǎn)、高線與添加輔助線解決.求二面角的大小,一般先作出二面角的平面角.再利用解三角形的辦法求解.對(duì)于本題,也可以建立空間坐標(biāo)系,利用空間向量進(jìn)行求解和證明.