7人排成一排,按以下要求分別有多少種排法?
(1)甲、乙兩人排在一起;
(2)甲不在左端、乙不在右端;
(3)甲、乙、丙三人中恰好有兩人排在一起.(答題要求:先列式,后計(jì)算)

解:(1)甲和乙兩個(gè)人要排列在一起,則可以把甲和乙看做一個(gè)元素,
用組成的元素與其他5個(gè)人6個(gè)元素全排列,注意甲和乙之間還有一個(gè)排列,
根據(jù)分步計(jì)數(shù)原理得到共有A22•A66=1440,
(2)由題意知可以先做出7個(gè)人所有的排列.共有A77種結(jié)果,
減去甲在左端和乙在右端的排列,這樣就重復(fù)減掉了甲在左端且乙在右端的排列,
最后需要加上這個(gè)結(jié)果,共有A77-2A66+A55=3720
(3)甲、乙、丙三人中恰好有兩人排在一起,
則先排列去掉甲乙丙之外的4個(gè)人,再?gòu)募滓冶?個(gè)人中選2個(gè)作為一個(gè)元素,
把這兩個(gè)元素在4個(gè)人形成的5個(gè)空中排列,
共有A22•C32•A44•A52=2880種結(jié)果.
分析:(1)甲和乙兩個(gè)人要排列在一起,則可以把甲和乙看做一個(gè)元素,用組成的元素與其他5個(gè)人6個(gè)元素全排列,注意甲和乙之間還有一個(gè)排列,相乘得到結(jié)果.
(2)可以先做出7個(gè)人所有的排列.共有A77種結(jié)果,減去甲在左端和乙在右端的排列,這樣就重復(fù)減掉了甲在左端且乙在右端的排列,最后需要加上這個(gè)結(jié)果.
(3)甲、乙、丙三人中恰好有兩人排在一起,則先排列去掉甲乙丙之外的4個(gè)人,再?gòu)募滓冶?個(gè)人中選2個(gè)作為一個(gè)元素,把這兩個(gè)元素在4個(gè)人形成的5個(gè)空中排列.
點(diǎn)評(píng):本題考查排列組合及簡(jiǎn)單的計(jì)數(shù)問題,本題解題的關(guān)鍵是不相鄰問題采用插空法,相鄰問題采用捆綁法,按照高矮順序排列的幾個(gè)人采用全排列除以幾個(gè)人之間的排列,在排列組合問題中這幾種方法經(jīng)常用到.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

7人排成一排,按以下要求分別有多少種排法?
(1)甲、乙兩人排在一起;
(2)甲不在左端、乙不在右端;
(3)甲、乙、丙三人中恰好有兩人排在一起.(答題要求:先列式,后計(jì)算)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010-2011年浙江省高二下學(xué)期期中考試?yán)砜茢?shù)學(xué) 題型:解答題

(本小題滿分10分)

7人排成一排,按以下要求分別有多少種排法?

(1)甲、乙兩人排在一起;(2)甲不在左端、乙不在右端;

(3)甲、乙、丙三人中恰好有兩人排在一起。(答題要求:先列式,后計(jì)算)

 

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010-2011學(xué)年浙江省溫州市瑞安中學(xué)高二(下)期中數(shù)學(xué)試卷(理科)(解析版) 題型:解答題

7人排成一排,按以下要求分別有多少種排法?
(1)甲、乙兩人排在一起;
(2)甲不在左端、乙不在右端;
(3)甲、乙、丙三人中恰好有兩人排在一起.(答題要求:先列式,后計(jì)算)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010-2011年浙江省瑞安中學(xué)高二下學(xué)期期中考試?yán)砜茢?shù)學(xué) 題型:解答題

(本小題滿分10分)
7人排成一排,按以下要求分別有多少種排法?
(1)甲、乙兩人排在一起;(2)甲不在左端、乙不在右端;
(3)甲、乙、丙三人中恰好有兩人排在一起。(答題要求:先列式,后計(jì)算)

查看答案和解析>>

同步練習(xí)冊(cè)答案