分析:(Ⅰ)設出等比數(shù)列{an}的公比為q,根據(jù)a3=8,前3項的和S3=14,列出關于首項和公比的方程組,消去首項得到關于q的方程,求出方程的解即可得到q的值,進而求出首項的值,根據(jù)首項和公比寫出數(shù)列{an}的通項公式即可;
(Ⅱ)令n=1代入已知的等式中,由a1的值求出b1的值,然后當n≥2時,已知的等式記作①,把n換為n-1得到另一個等式,記作②,①-②且由(Ⅰ)求出的an的通項公式即可得到bn的通項公式,把b1的值代入也滿足,利用bn+1-bn即可求出數(shù)列的公差,進而推出數(shù)列{bn}是等差數(shù)列,得證.
解答:解:(Ⅰ)設等比數(shù)列{a
n}的公比為q,
則q>0且
| a1+ a1q+a1q2=14① | a1q2=8 ② |
| |
,
①÷②得:
=
,整理得:3q
2-4q-4=0,
解得:q=-
(舍去),q=2,∵a
1=2,∴a
n=2
n(n∈N
+);
(Ⅱ)當n=1時,
=
,a
1=2,∴b
1=1,
當n≥2時,
+
+…+
=
①,
+
+…+
=
②(n∈N
*),
①-②得:
=
-
=
,又a
n=2
n,
∴b
n=2-n(n≥2),又∵b
1=1=2-1,∴b
n=2-n(n∈N
+),
∵b
n+1-b
n=-1,
∴數(shù)列{b
n}是以1為首項,-1為公差的等差數(shù)列.
點評:此題考查學生靈活運用等比數(shù)列的通項公式化簡求值,掌握等差數(shù)列的確定方法,是一道中檔題.學生在第二問中求出bn的通項公式后要注意把b1的值代入進行驗證.