解:(Ⅰ)f(x)的定義域?yàn)椋?,+∞),(1分)
當(dāng)a=1時(shí),f(x)=x-lnx,
,(2分)
x | (0,1) | 1 | (1,+∞) |
f'(x) | - | 0 | + |
f(x) | | 極小 | |
(3分)
所以f(x)在x=1處取得極小值1.(4分)
(Ⅱ)
,
(6分)
①當(dāng)a+1>0時(shí),即a>-1時(shí),在(0,1+a)上h'(x)<0,在(1+a,+∞)上h'(x)>0,
所以h(x)在(0,1+a)上單調(diào)遞減,在(1+a,+∞)上單調(diào)遞增;(7分)
②當(dāng)1+a≤0,即a≤-1時(shí),在(0,+∞)上h'(x)>0,
所以,函數(shù)h(x)在(0,+∞)上單調(diào)遞增.(8分)
( III)在[1,e]上存在一點(diǎn)x
0,使得f(x
0)<g(x
0)成立,即
在[1,e]上存在一點(diǎn)x
0,使得h(x
0)<0,
即函數(shù)
在[1,e]上的最小值小于零.(9分)
由(Ⅱ)可知
①即1+a≥e,即a≥e-1時(shí),h(x)在[1,e]上單調(diào)遞減,
所以h(x)的最小值為h(e),
由
可得
,
因?yàn)?img class='latex' src='http://thumb.zyjl.cn/pic5/latex/118202.png' />,
所以
;(10分)
②當(dāng)1+a≤1,即a≤0時(shí),h(x)在[1,e]上單調(diào)遞增,
所以h(x)最小值為h(1),由h(1)=1+1+a<0可得a<-2;(11分)
③當(dāng)1<1+a<e,即0<a<e-1時(shí),可得h(x)最小值為h(1+a),
因?yàn)?<ln(1+a)<1,
所以,0<aln(1+a)<a
故h(1+a)=2+a-aln(1+a)>2
此時(shí),h(1+a)<0不成立.(12分)
綜上討論可得所求a的范圍是:
或a<-2.(13分)
分析:(Ⅰ)先求出其導(dǎo)函數(shù),讓其大于0求出增區(qū)間,小于0求出減區(qū)間即可得到函數(shù)的單調(diào)區(qū)間進(jìn)而求出函數(shù)f(x)的極值;
(Ⅱ)先求出函數(shù)h(x)的導(dǎo)函數(shù),分情況討論讓其大于0求出增區(qū)間,小于0求出減區(qū)間即可得到函數(shù)的單調(diào)區(qū)間;
(Ⅲ)先把f(x
0)<g(x
0)成立轉(zhuǎn)化為h(x
0)<0,即函數(shù)
在[1,e]上的最小值小于零;再結(jié)合(Ⅱ)的結(jié)論分情況討論求出其最小值即可求出a的取值范圍.
點(diǎn)評(píng):本題第一問考查利用導(dǎo)函數(shù)來(lái)研究函數(shù)的極值.在利用導(dǎo)函數(shù)來(lái)研究函數(shù)的極值時(shí),分三步①求導(dǎo)函數(shù),②求導(dǎo)函數(shù)為0的根,③判斷根左右兩側(cè)的符號(hào),若左正右負(fù),原函數(shù)取極大值;若左負(fù)右正,原函數(shù)取極小值.