分析 由根據(jù)拋物線的定義得:|PQ|=x1+x2+2,由y12=4x1,y22=4x2,相減得,y12-y22=4(x1-x2),求得直線斜率k,求得直線PQ的方程,代入求得M點(diǎn)坐標(biāo),求得|MF|,則$\frac{丨FR丨}{丨PQ丨}$=$\frac{1}{2}$,即可求得λ.
解答 解:拋物線E:y2=4x的焦點(diǎn)F為(1,0),設(shè)P(x1,y1),Q(x2,y2),
則根據(jù)拋物線的定義得:|PQ|=x1+x2+2,
由y12=4x1,y22=4x2,相減得,y12-y22=4(x1-x2),
∴k=$\frac{{y}_{1}-{y}_{2}}{{x}_{1}-{x}_{2}}$=$\frac{4}{{y}_{1}-{y}_{2}}$,
則線段PQ的中垂線的方程為:y-$\frac{{y}_{1}+{y}_{2}}{2}$=-$\frac{{y}_{1}-{y}_{2}}{2p}$(x-$\frac{{x}_{1}+{x}_{2}}{2}$),
令y=0,得M的橫坐標(biāo)為2+$\frac{{x}_{1}+{x}_{2}}{2}$,又F(1,0),
∴|MF|=$\frac{{x}_{1}+{x}_{2}+2}{2}$,
則$\frac{丨FR丨}{丨PQ丨}$=$\frac{1}{2}$.
|MF|=$\frac{1}{2}$|PQ|,
故答案為:$\frac{1}{2}$.
點(diǎn)評 本題考查拋物線的定義,直線的斜率公式,中點(diǎn)坐標(biāo)公式,考查計(jì)算能力,屬于中檔題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | y2=-x | B. | y2=2x | C. | 2x2=y | D. | x2=-4y |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 1 | B. | $\sqrt{2}$ | C. | $\sqrt{3}$ | D. | $\sqrt{5}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 一個圓上 | B. | 一個橢圓上 | C. | 雙曲線的一支上 | D. | 拋物線上 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com