【題目】某商場營銷人員對某商品進行市場營銷調查,發(fā)現(xiàn)每回饋消費者一定的點數(shù),該商品每天的銷量就會發(fā)生一定的變化,經(jīng)過統(tǒng)計得到下表:
回饋點數(shù) | 1 | 2 | 3 | 4 | 5 |
銷量(百件)/天 | 0.5 | 0.6 | 1 | 1.4 | 1.7 |
(1)經(jīng)分析發(fā)現(xiàn),可用線性回歸模型擬合該商品每天的銷量(百件)與返還點數(shù)之間的相關關系.請用最小二乘法求關于的線性回歸方程,并預測若回饋6個點時該商品每天銷量;
(2)已知節(jié)日期間某地擬購買該商品的消費群體十分龐大,營銷調研機構對其中的200名消費者的返點數(shù)額的心理預期值進行了抽樣調查,得到如下頻數(shù)表:
返還點數(shù)預期值區(qū)間 | ||||||
頻數(shù) | 20 | 60 | 60 | 30 | 20 | 10 |
(i)求這200位擬購買該商品的消費者對返點點數(shù)的心理預期值的樣本平均數(shù)及中位數(shù)的估計值(同一區(qū)間的預期值可用該區(qū)間的中點值代替;估計值精確到0.1);
(ii)將對返點點數(shù)的心理預期值在和的消費者分別定義為“欲望緊縮型”消費者和“欲望膨脹型”消費者,現(xiàn)采用分層抽樣的方法從位于這兩個區(qū)間的30名消費者中隨機抽取6名,再從這6人中隨機抽取3名進行跟蹤調查,設抽出的3人中“欲望緊縮型”消費者的人數(shù)為隨機變量,求的分布列及數(shù)學期望.
參考公式及數(shù)據(jù):①,;②.
【答案】(1),2百件;(2)(i)6,;(ii)2.
【解析】
(1)利用最小二乘法求關于的線性回歸方程,并預測若回饋6個點時該商品每天銷量;(2)(i)利用頻率分布直方圖的平均數(shù)公式和中位數(shù)公式求樣本平均數(shù)及中位數(shù)的估計值;(ii)由題得X=1,2,3,再求的分布列及數(shù)學期望.
(1)易知,,
,
從而
.
所以.
則關于的線性回歸方程為,
當時,,即返回6個點時該商品每天銷量約為2百件.
(2)(i)根據(jù)題意,這200位擬購買該商品的消費者對返回點數(shù)的心里預期值的平均值,則 ,
所以中位數(shù)的估計值為.
(ii)抽取6名消費者中“欲望緊縮型”消費者人數(shù)為,
“欲望膨脹型”消費者人數(shù)為.
,,.
故隨機變量的分布列為
1 | 2 | 3 | |
所以.
科目:高中數(shù)學 來源: 題型:
【題目】若四面體的三組對棱分別相等,即,,,則________.(寫出所有正確結論的編號)
①四面體每個面的面積相等
②四面體每組對棱相互垂直
③連接四面體每組對棱中點的線段相互垂直平分
④從四面體每個頂點出發(fā)的三條棱的長都可以作為一個三角形的三邊長
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】拋物線M:的焦點為F,過焦點F的直線l(與x軸不垂直)交拋物線M于點A,B,A關于x軸的對稱點為.
(1)求證:直線過定點,并求出這個定點;
(2)若的垂直平分線交拋物線于C,D,四邊形外接圓圓心N的橫坐標為19,求直線AB和圓N的方程.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】(本小題滿分12分)
某高校設計了一個實驗學科的實驗考查方案:考生從6道備選題中一次性隨機抽取3題,按照題目要求獨立完成全部實驗操作。規(guī)定:至少正確完成其中2題的便可提交通過。已知6道備選題中考生甲有4道題能正確完成,2道題不能完成;考生乙每題正確完成的概率都是,且每題正確完成與否互不影響。
(Ⅰ)分別寫出甲、乙兩考生正確完成題數(shù)的概率分布列,并計算數(shù)學期望;
(Ⅱ)試從兩位考生正確完成題數(shù)的數(shù)學期望及至少正確完成2題的概率分析比較兩位考生的實驗操作能力.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在同一直角坐標系中,經(jīng)過伸縮變換后,曲線C的方程變?yōu)?/span>.以坐標原點為極點,x軸正半軸為極軸建立極坐標系,直線/的極坐標方程為.
(1)求曲線C和直線l的直角坐標方程;
(2)過點作l的垂線l0交C于A,B兩點,點A在x軸上方,求的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】2021年福建省高考實行“”模式.“”模式是指:“3”為全國統(tǒng)考科目語文、數(shù)學、外語,所有學生必考;“1”為首選科目,考生須在高中學業(yè)水平考試的物理、歷史科目中選擇1科;“2”為再選科目,考生可在化學、生物、政治、地理4個科目中選擇2科,共計6個考試科目.
(1)若學生甲在“1”中選物理,在“2”中任選2科,求學生甲選化學和生物的概率;
(2)若學生乙在“1”中任選1科,在“2”中任選2科,求學生乙不選政治但選生物的概率.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】有限數(shù)列同時滿足下列兩個條件:
①對于任意的(),;
②對于任意的(),,,三個數(shù)中至少有一個數(shù)是數(shù)列中的項.[來
(1)若,且,,,,求的值;
(2)證明:不可能是數(shù)列中的項;
(3)求的最大值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com