【題目】若函數(shù)f(x)= 恰有2個(gè)零點(diǎn),則實(shí)數(shù)a的取值范圍是

【答案】[ ,1)∪[3,+∞)
【解析】解:①當(dāng)a≤0時(shí),f(x)>0恒成立,

故函數(shù)f(x)沒(méi)有零點(diǎn);②當(dāng)a>0時(shí),3x﹣a=0,

解得,x=log3a,又∵x<1;

∴當(dāng)a∈(0,3)時(shí),log3a<1,

故3x﹣a=0有解x=log3a;

當(dāng)a∈[3,+∞)時(shí),log3a≥1,

故3x﹣a=0在(﹣∞,1)上無(wú)解;

∵x2﹣3ax+2a2=(x﹣a)(x﹣2a),

∴當(dāng)a∈(0, )時(shí),

方程x2﹣3ax+2a2=0在[1,+∞)上無(wú)解;

當(dāng)a∈[ ,1)時(shí),

方程x2﹣3ax+2a2=0在[1,+∞)上有且僅有一個(gè)解;

當(dāng)a∈[1,+∞)時(shí),

方程x2﹣3ax+2a2=0在[1,+∞)上有且僅有兩個(gè)解;

綜上所述,

當(dāng)a∈[ ,1)或a∈[3,+∞)時(shí),

函數(shù)f(x)= 恰有2個(gè)零點(diǎn),

所以答案是:[ ,1)∪[3,+∞).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知 , 的夾角為120°,且| |=4,| |=2.求:
(1)( ﹣2 )( + );
(2)|3 ﹣4 |.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某單位實(shí)行休年假制度三年以來(lái),50名職工休年假的次數(shù)進(jìn)行的調(diào)查統(tǒng)計(jì)結(jié)果如表所示:
根據(jù)下表信息解答以下問(wèn)題:

休假次數(shù)

0

1

2

3

人數(shù)

5

10

20

15


(1)從該單位任選兩名職工,用η表示這兩人休年假次數(shù)之和,記“函數(shù)f(x)=x2﹣ηx﹣1在區(qū)間(4,6)上有且只有一個(gè)零點(diǎn)”為事件A,求事件A發(fā)生的概率P;
(2)從該單位任選兩名職工,用ξ表示這兩人休年假次數(shù)之差的絕對(duì)值,求隨機(jī)變量ξ的分布列及數(shù)學(xué)期望Eξ.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,有一個(gè)正三棱錐的零件,P是側(cè)面ACD上的一點(diǎn).過(guò)點(diǎn)P作一個(gè)與棱AB垂直的截面,怎樣畫法?并說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)△ABC的內(nèi)角A,B,C的對(duì)邊分別為a,b,c,滿足2asinA=(2b﹣ c)sinB+(2c﹣ b)sinC. (Ⅰ)求角A的大。
(Ⅱ)若a=2,b=2 ,求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】f(x),g(x)分別是定義在R上的奇函數(shù)和偶函數(shù),當(dāng)x<0時(shí),f′(x)g(x)+f(x)g′(x)>0,且g(﹣3)=0,則不等式f(x)g(x)<0的解集是(
A.(﹣∞,﹣3)∪(0,3)
B.(﹣∞,﹣3)∪(3,+∞)
C.(﹣3,0)∪(3,+∞)
D.(﹣3,0)∪(0,3)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,三棱柱ABC﹣A1B1C1中,側(cè)面BB1C1C為菱形,B1C的中點(diǎn)為O,且AO⊥平面BB1C1C.
(1)證明:B1C⊥AB;
(2)若AC⊥AB1 , ∠CBB1=60°,BC=1,求三棱柱ABC﹣A1B1C1的高.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知直線l1的方程為3x+4y﹣12=0,
(1)求l2的方程,使得:①l2與l1平行,且過(guò)點(diǎn)(﹣1,3); ②l2與l1垂直,且l2與兩坐標(biāo)軸圍成的三角形面積為4;
(2)直線l1與兩坐標(biāo)軸分別交于A、B 兩點(diǎn),求三角形OAB(O為坐標(biāo)原點(diǎn))內(nèi)切圓及外接圓的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)=ax2+2ax+4(0<a<3),若x1<x2 , x1+x2=1﹣a,則(
A.f(x1)<f(x2
B.f(x1)>f(x2
C.f(x1)=f(x2
D.f(x1)<f(x2)和f(x1)=f(x2)都有可能

查看答案和解析>>

同步練習(xí)冊(cè)答案