(2007
上海,20)如果有窮數(shù)列,,,…,(n為正整數(shù))滿足條件即,我們稱其為“對稱數(shù)列”.例如,由組合數(shù)組成的數(shù)列就是“對稱數(shù)列”.(1)
設(shè)是項數(shù)為7的“對稱數(shù)列”,其中是等差數(shù)列,且.依次寫出的每一項;(2)
設(shè)是項數(shù)為2k-1(正整數(shù)k>1)的“對稱數(shù)列”,且,,…,是首項為50,公差為-4的等差數(shù)列.記各項的和為.當(dāng)k為何值時,取得最大值?并求出的最大值;(3)
對于確定的正整數(shù)m>1,寫出所有項數(shù)不超過2m的“對稱數(shù)列”,使得依次是該數(shù)列中連續(xù)的項;當(dāng)m>1500時,求其中一個“對稱數(shù)列”前2008項的和.
解析: (1)設(shè)的公差為d,則 ,解得d=3,∴數(shù)列 為2,5,8,11,8,5,2.(2) , ,∴當(dāng) k=13時,取得最大值. 的最大值為626.(3) 所有可能的“對稱數(shù)列”是: .對于①,當(dāng)m≥2008時, .當(dāng) 1500<m≤2007時, .對于②,當(dāng) m≥2008時,.當(dāng) 1500<m≤2007時, .對于③,當(dāng) m≥2008時,,當(dāng) 1500<m≤2007時, ,對于④,當(dāng) m≥2008時,.當(dāng) 1500<m≤2007時,. |
科目:高中數(shù)學(xué) 來源: 題型:044
(2007
上海春,20)通常用a、b、c分別表示△ABC的三個內(nèi)角A、B、C所對邊的邊長,R表示△ABC的外接圓半徑.(1)
如圖所示,在以O為圓心、半徑為2的⊙O中,BC和BA是圓的弦,其中BC=2,∠ABC=45°,求弦AB的長;(2)
在△ABC中,若∠C是鈍角,求證:;(3)
給定三個正實數(shù)a、b、R,其中b≤a.問:a、b、R滿足怎樣的關(guān)系時,以a、b為邊長,R為外接圓半徑的△ABC不存在、存在一個或存在兩個(全等的三角形算作同一個)?在△ABC存在的情況下,用a、b、R表示c.查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com