3.設(shè)a>0且a≠1,函數(shù)f(x)=loga$\frac{x-3}{x+3}$,g(x)=1+loga(x-1),兩函數(shù)的定義域分別為集合A、B,若將A∩B記作區(qū)間D.
(1)試求函數(shù)f(x)在D上的單調(diào)性;
(2)若[m,n]⊆D,函數(shù)f(x)在[m,n]上的值域恰好為[g(n),g(m)],求a的取值范圍.

分析 (1)變形得出f(x)=loga(1$-\frac{6}{x+3}$),據(jù)復(fù)合函數(shù)單調(diào)性可以判斷.
(2)函數(shù)f(x)在[m,n]上的值域恰好為[g(n),g(m)],
g(x)單調(diào)遞減函數(shù).得出0<a<1,再利用函數(shù)性質(zhì)得出1$-\frac{6}{x+3}$=a(x-1)有2個根,分離參數(shù)利用基本不等式求解即可.

解答 解:(1)∵設(shè)a>0且a≠1,函數(shù)f(x)=loga$\frac{x-3}{x+3}$,
g(x)=1+loga(x-1),
∴$\frac{x-3}{x+3}$>0即x>3或x<-3
x-1>0,x>1
∴A={x|x>3或x<-3}
B+{x|x>1}
∴D=(3,+∞)
∵函數(shù)f(x)=loga$\frac{x-3}{x+3}$,
∴f(x)=loga(1$-\frac{6}{x+3}$),
∵u(x)=1$-\frac{6}{x+3}$在(3,+∞)上單調(diào)遞增
∴據(jù)復(fù)合函數(shù)單調(diào)性得出:
當a>1時,f(x)=loga(1$-\frac{6}{x+3}$)為增函數(shù);
當0<a<1時,f(x)=loga(1$-\frac{6}{x+3}$)為減函數(shù);
(2)∵函數(shù)f(x)在[m,n]上的值域恰好為[g(n),g(m)],
∴g(x)單調(diào)遞減函數(shù),
∴0<a<1,
∴當0<a<1時,f(x)=loga(1$-\frac{6}{x+3}$)為減函數(shù)
∴1$-\frac{6}{x+3}$=a(x-1)有2個根,
即$\frac{1}{a}$=(x-3)$+\frac{12}{x-3}$+8,x>3
根據(jù)不等式得出:(x-3)$+\frac{12}{x-3}$+8≥4$\sqrt{3}$+8
$\frac{1}{a}$≥4$\sqrt{3}$+8,
∴0<a≤$\frac{1}{4\sqrt{3}+8}$

點評 本題考察了函數(shù)的性質(zhì),不等式,構(gòu)造思想,轉(zhuǎn)化思想,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知sin(π-α)sin(4π+α)=$\frac{1}{9}$,α∈($\frac{5π}{2}$,3π),求cos(α-$\frac{3π}{2}$)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.如圖,網(wǎng)格紙的小正方形的邊長是1,粗線畫出的是一個幾何體的三視圖,則這個幾何體的體積為( 。
A.$\frac{5}{2}$B.$\frac{7}{2}$C.2+$\frac{\sqrt{3}}{4}$D.3+$\frac{\sqrt{3}}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.已知n∈N*,n>1,n個實數(shù)a1,a2,…,an 滿足a1+a2+…+an=0,|a1|+|a2|+…+|an |=1.求證:|a1+2a2+3a3+…+n|an|≤$\frac{n-1}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.已知$tanθ=\frac{3}{4}$,那么$tan(θ+\frac{π}{4})$等于( 。
A.-7B.$-\frac{1}{7}$C.7D.$\frac{1}{7}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.函數(shù)y=$\frac{8}{x-1}$+1的單調(diào)遞減區(qū)間是( 。
A.(-∞,1)∪(1,+∞)B.(-∞,-1)∪(-1,+∞)C.(-∞,1),(1,+∞)D.(-∞,-1),(-1,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.已知函數(shù)f(x)=lnx,g(x)=ax2-x(a≠0).
(1)若函數(shù)y=f(x)與y=g(x)的圖象在公共點P處有相同的切線,求實數(shù)a的值并求點P的坐標;
(2)若函數(shù)y=f(x)與y=g(x)的圖象有兩個不同的交點M、N,求實數(shù)a的取值范圍;
(3)在(2)的條件下,過線段MN的中點作x軸的垂線分別與y=f(x)的圖象和y=g(x)的圖象交于S、T點,以S為切點作y=f(x)的切線l1,以T為切點作y=g(x)的切線l2,是否存在實數(shù)a使得l1∥l2,如果存在,求出a的值;如果不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.某校學(xué)習(xí)小組開展“學(xué)生數(shù)學(xué)成績與化學(xué)成績的關(guān)系”的課題研究,對該校高二年級800名學(xué)生上學(xué)期期 數(shù)學(xué)和化學(xué)成績,按優(yōu)秀和不優(yōu)秀分類得結(jié)果:數(shù)學(xué)和化學(xué)都優(yōu)秀的有60人,數(shù)學(xué)成績優(yōu)秀但化學(xué)不優(yōu)秀的有140人,化學(xué)成績優(yōu)秀但數(shù)學(xué)不優(yōu)秀的有100人.
(Ⅰ)補充完整表格并判斷能否在犯錯概率不超過0.001前提下認為該校學(xué)生的數(shù)學(xué)成績與化學(xué)成績有關(guān)系?
數(shù)學(xué)優(yōu)秀數(shù)學(xué)不優(yōu)秀總計
化學(xué)優(yōu)秀60           100        160          
化學(xué)不優(yōu)秀140500640
總計200600800
(Ⅱ)現(xiàn)有4名成員甲、乙、丙、丁隨機分成兩組,每組2人,一組負責(zé)收集成績,另一組負責(zé)數(shù)據(jù)處理.求學(xué)生甲分到負責(zé)收集成績組,學(xué)生乙分到負責(zé)數(shù)據(jù)處理組的概率.
p(K2>k00.0100.0050.001
k06.6357.87910.828
附:K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.已知F是拋物線y2=2x的焦點,A,B是該拋物線上的兩點,且|AF|+|BF|=4,則線段AB的中點到拋物線準線的距離為( 。
A.1B.2C.3D.4

查看答案和解析>>

同步練習(xí)冊答案