【題目】已知橢圓右焦點(diǎn),離心率為,過作兩條互相垂直的弦,設(shè)中點(diǎn)分別為

(1) 求橢圓的標(biāo)準(zhǔn)方程;

(2)求以為頂點(diǎn)的四邊形的面積的取值范圍;

【答案】(1) (2)

【解析】

(Ⅰ)利用橢圓的離心率,以及求出a、b,即可求橢圓的方程;
(Ⅱ)①當(dāng)兩條弦中一條斜率為0時(shí),另一條弦的斜率不存在,直接求出面積.
②當(dāng)兩弦斜率均存在且不為0時(shí),設(shè)A(x1,y1),B(x2,y2),且設(shè)直線AB的方程為y=k(x-1),與橢圓方程聯(lián)立,利用韋達(dá)定理以及弦長公式,求出AB,CD即可求解面積的表達(dá)式,通過基本不等式求出面積的最值.

解:(1) 由題意:,

,

則橢圓的方程為

(2) ①當(dāng)兩直線一條斜率不存在一條斜率為0時(shí),

②當(dāng)兩直線斜率存在且都不為0時(shí),

設(shè)直線方程為

將其帶入橢圓方程整理得:

同理,

,當(dāng)時(shí),

綜上所述四邊形面積范圍是

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】以直角坐標(biāo)系的原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系,已知點(diǎn)的直角坐標(biāo)為,若直線的極坐標(biāo)方程為,曲線的參數(shù)方程是為參數(shù)).

(1)求直線l和曲線的普通方程;

(2)設(shè)直線l和曲線交于兩點(diǎn),求

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】沃爾瑪超市委托某機(jī)構(gòu)調(diào)查該超市的顧客使用移動(dòng)支付的情況.調(diào)查人員從年齡在內(nèi)的顧客中,隨機(jī)抽取了200人,調(diào)查結(jié)果如圖所示:

1)為推廣移動(dòng)支付,超市準(zhǔn)備對(duì)使用移動(dòng)支付的每位顧客贈(zèng)送1個(gè)環(huán)保購物袋.若某日該超市預(yù)計(jì)有5000人購物,試根據(jù)上述數(shù)據(jù)估計(jì),該超市當(dāng)天應(yīng)準(zhǔn)備多少個(gè)環(huán)保購物袋?

2)填寫下面列聯(lián)表,并根據(jù)列聯(lián)表判斷是否有的把握認(rèn)為使用移動(dòng)支付與年齡有關(guān).

年齡的人數(shù)

年齡的人數(shù)

總計(jì)

使用移動(dòng)支付

不使用移動(dòng)支付

總計(jì)

,其中.

/tr>

0.050

0.010

0.001

3.841

6.635

10.828

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,已知直線為參數(shù)).以坐標(biāo)原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.

(1)求曲線的直角坐標(biāo)方程;

(2)設(shè)點(diǎn)的直角坐標(biāo)為,直線與曲線的交點(diǎn)為,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)上沒有最小值,則的取值范圍是________________

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某高校統(tǒng)計(jì)課程的教師隨機(jī)調(diào)查了選該課的一些學(xué)生的情況,具體數(shù)據(jù)如下表,為了判斷主修統(tǒng)計(jì)專業(yè)是否與性別有關(guān),計(jì)算得到,因?yàn)?/span>,所以判定主修統(tǒng)計(jì)專業(yè)與性別是有關(guān)系的,那么這種判斷出錯(cuò)的可能性為________.

專業(yè)

性別

非統(tǒng)計(jì)專業(yè)

統(tǒng)計(jì)專業(yè)

13

10

7

20

本題可以參考獨(dú)立性檢驗(yàn)臨界值表:

0.5

0.40

0.25

0.15

0.10

0.05

0.025

0.010

0.005

0.001

0.455

0.708

1.323

2.072

2.706

3.841

5.024

6.635

7.879

10.828

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知點(diǎn)為拋物線上的兩點(diǎn),為坐標(biāo)原點(diǎn),且,則的面積的最小值為( )

A. 16 B. 8 C. 4 D. 2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知正項(xiàng)數(shù)列的首項(xiàng),前n項(xiàng)和滿足

(1)求數(shù)列的通項(xiàng)公式;

(2)若數(shù)列是公比為4的等比數(shù)列,且,,也是等比數(shù)列,若數(shù)列單調(diào)遞增,求實(shí)數(shù)的取值范圍;

(3)若數(shù)列、都是等比數(shù)列,且滿足,試證明: 數(shù)列中只存在三項(xiàng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】隨著網(wǎng)絡(luò)和智能手機(jī)的普及與快速發(fā)展,許多可以解答各學(xué)科問題的搜題軟件走紅.有教育工作者認(rèn)為:網(wǎng)搜答案可以起到拓展思路的作用,但是對(duì)多數(shù)學(xué)生來講,容易產(chǎn)生依賴心理,對(duì)學(xué)習(xí)能力造成損害.為了了解網(wǎng)絡(luò)搜題在學(xué)生中的使用情況,某校對(duì)學(xué)生在一周時(shí)間內(nèi)進(jìn)行網(wǎng)絡(luò)搜題的頻數(shù)進(jìn)行了問卷調(diào)查,并從參與調(diào)查的學(xué)生中抽取了男、女學(xué)生各人進(jìn)行抽樣分析,得到如下樣本頻數(shù)分布表:

一周時(shí)間內(nèi)進(jìn)行網(wǎng)絡(luò)搜題的頻數(shù)區(qū)間

男生頻數(shù)

女生頻數(shù)

18

4

10

8

12

13

6

15

4

10

將學(xué)生在一周時(shí)間內(nèi)進(jìn)行網(wǎng)絡(luò)搜題頻數(shù)超過次的行為視為“經(jīng)常使用網(wǎng)絡(luò)搜題”,不超過20次的視為“偶爾或不用網(wǎng)絡(luò)搜題”.

1)根據(jù)已有數(shù)據(jù),完成下列列聯(lián)表(單位:人)中數(shù)據(jù)的填寫,并判斷是否在犯錯(cuò)誤的概率不超過%的前提下有把握認(rèn)為使用網(wǎng)絡(luò)搜題與性別有關(guān)?

經(jīng)常使用網(wǎng)絡(luò)搜題

偶爾或不用絡(luò)搜題

合計(jì)

男生

女生

合計(jì)

2)將上述調(diào)查所得到的頻率視為概率,從該校所有參與調(diào)查的學(xué)生中,采用隨機(jī)抽樣的方法每次抽取一個(gè)人,抽取人,記經(jīng)常使用網(wǎng)絡(luò)搜題的人數(shù)為,若每次抽取的結(jié)果是相互獨(dú)立的,求隨機(jī)變量的分布列和數(shù)學(xué)期望.

參考公式:,其中.

參考數(shù)據(jù):

0.050

0.010

0.001

3.841

6.635

10.828

查看答案和解析>>

同步練習(xí)冊(cè)答案