【題目】已知橢圓右焦點(diǎn),離心率為,過作兩條互相垂直的弦,設(shè)中點(diǎn)分別為.
(1) 求橢圓的標(biāo)準(zhǔn)方程;
(2)求以為頂點(diǎn)的四邊形的面積的取值范圍;
【答案】(1) (2)
【解析】
(Ⅰ)利用橢圓的離心率,以及求出a、b,即可求橢圓的方程;
(Ⅱ)①當(dāng)兩條弦中一條斜率為0時(shí),另一條弦的斜率不存在,直接求出面積.
②當(dāng)兩弦斜率均存在且不為0時(shí),設(shè)A(x1,y1),B(x2,y2),且設(shè)直線AB的方程為y=k(x-1),與橢圓方程聯(lián)立,利用韋達(dá)定理以及弦長公式,求出AB,CD即可求解面積的表達(dá)式,通過基本不等式求出面積的最值.
解:(1) 由題意:,
∴,
則橢圓的方程為
(2) ①當(dāng)兩直線一條斜率不存在一條斜率為0時(shí),
②當(dāng)兩直線斜率存在且都不為0時(shí),
設(shè)直線方程為
將其帶入橢圓方程整理得:
同理,
,當(dāng)時(shí),
綜上所述四邊形面積范圍是
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】以直角坐標(biāo)系的原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系,已知點(diǎn)的直角坐標(biāo)為,若直線的極坐標(biāo)方程為,曲線的參數(shù)方程是(為參數(shù)).
(1)求直線l和曲線的普通方程;
(2)設(shè)直線l和曲線交于兩點(diǎn),求.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】沃爾瑪超市委托某機(jī)構(gòu)調(diào)查該超市的顧客使用移動(dòng)支付的情況.調(diào)查人員從年齡在內(nèi)的顧客中,隨機(jī)抽取了200人,調(diào)查結(jié)果如圖所示:
(1)為推廣移動(dòng)支付,超市準(zhǔn)備對(duì)使用移動(dòng)支付的每位顧客贈(zèng)送1個(gè)環(huán)保購物袋.若某日該超市預(yù)計(jì)有5000人購物,試根據(jù)上述數(shù)據(jù)估計(jì),該超市當(dāng)天應(yīng)準(zhǔn)備多少個(gè)環(huán)保購物袋?
(2)填寫下面列聯(lián)表,并根據(jù)列聯(lián)表判斷是否有的把握認(rèn)為使用移動(dòng)支付與年齡有關(guān).
年齡的人數(shù) | 年齡的人數(shù) | 總計(jì) | |
使用移動(dòng)支付 | |||
不使用移動(dòng)支付 | |||
總計(jì) |
,其中.
0.050 | 0.010 | 0.001 | /tr>|
3.841 | 6.635 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,已知直線:(為參數(shù)).以坐標(biāo)原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.
(1)求曲線的直角坐標(biāo)方程;
(2)設(shè)點(diǎn)的直角坐標(biāo)為,直線與曲線的交點(diǎn)為,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某高校“統(tǒng)計(jì)”課程的教師隨機(jī)調(diào)查了選該課的一些學(xué)生的情況,具體數(shù)據(jù)如下表,為了判斷主修統(tǒng)計(jì)專業(yè)是否與性別有關(guān),計(jì)算得到,因?yàn)?/span>,所以判定主修統(tǒng)計(jì)專業(yè)與性別是有關(guān)系的,那么這種判斷出錯(cuò)的可能性為________.
專業(yè) 性別 | 非統(tǒng)計(jì)專業(yè) | 統(tǒng)計(jì)專業(yè) |
男 | 13 | 10 |
女 | 7 | 20 |
本題可以參考獨(dú)立性檢驗(yàn)臨界值表:
0.5 | 0.40 | 0.25 | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
0.455 | 0.708 | 1.323 | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知點(diǎn)為拋物線上的兩點(diǎn),為坐標(biāo)原點(diǎn),且,則的面積的最小值為( )
A. 16 B. 8 C. 4 D. 2
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知正項(xiàng)數(shù)列的首項(xiàng),前n項(xiàng)和滿足.
(1)求數(shù)列的通項(xiàng)公式;
(2)若數(shù)列是公比為4的等比數(shù)列,且,,也是等比數(shù)列,若數(shù)列單調(diào)遞增,求實(shí)數(shù)的取值范圍;
(3)若數(shù)列、都是等比數(shù)列,且滿足,試證明: 數(shù)列中只存在三項(xiàng).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】隨著網(wǎng)絡(luò)和智能手機(jī)的普及與快速發(fā)展,許多可以解答各學(xué)科問題的搜題軟件走紅.有教育工作者認(rèn)為:網(wǎng)搜答案可以起到拓展思路的作用,但是對(duì)多數(shù)學(xué)生來講,容易產(chǎn)生依賴心理,對(duì)學(xué)習(xí)能力造成損害.為了了解網(wǎng)絡(luò)搜題在學(xué)生中的使用情況,某校對(duì)學(xué)生在一周時(shí)間內(nèi)進(jìn)行網(wǎng)絡(luò)搜題的頻數(shù)進(jìn)行了問卷調(diào)查,并從參與調(diào)查的學(xué)生中抽取了男、女學(xué)生各人進(jìn)行抽樣分析,得到如下樣本頻數(shù)分布表:
一周時(shí)間內(nèi)進(jìn)行網(wǎng)絡(luò)搜題的頻數(shù)區(qū)間 | 男生頻數(shù) | 女生頻數(shù) |
18 | 4 | |
10 | 8 | |
12 | 13 | |
6 | 15 | |
4 | 10 |
將學(xué)生在一周時(shí)間內(nèi)進(jìn)行網(wǎng)絡(luò)搜題頻數(shù)超過次的行為視為“經(jīng)常使用網(wǎng)絡(luò)搜題”,不超過20次的視為“偶爾或不用網(wǎng)絡(luò)搜題”.
(1)根據(jù)已有數(shù)據(jù),完成下列列聯(lián)表(單位:人)中數(shù)據(jù)的填寫,并判斷是否在犯錯(cuò)誤的概率不超過%的前提下有把握認(rèn)為使用網(wǎng)絡(luò)搜題與性別有關(guān)?
經(jīng)常使用網(wǎng)絡(luò)搜題 | 偶爾或不用絡(luò)搜題 | 合計(jì) | |
男生 | |||
女生 | |||
合計(jì) |
(2)將上述調(diào)查所得到的頻率視為概率,從該校所有參與調(diào)查的學(xué)生中,采用隨機(jī)抽樣的方法每次抽取一個(gè)人,抽取人,記經(jīng)常使用網(wǎng)絡(luò)搜題的人數(shù)為,若每次抽取的結(jié)果是相互獨(dú)立的,求隨機(jī)變量的分布列和數(shù)學(xué)期望.
參考公式:,其中.
參考數(shù)據(jù):
0.050 | 0.010 | 0.001 | |
3.841 | 6.635 | 10.828 |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com