設(shè)集合A={x|x∈N,且1≤x≤26},B={a,b,c…,z},對應(yīng)關(guān)系f:A→B如下表即1到26按由小到大順序排列的自然數(shù)與按照字母表順序排列的26個英文小寫字母之間的一一對應(yīng)):
x 1 2 3 4 5 25 26
f(x) a b c d
又知函數(shù)g(x)=
log2(32-x)   (22<x<32)
x+4                (0≤x≤22)
,若f(g(x)),f(g(20)),f(g(x2)),f(g(9))所表示的字母依次排雷恰好組成的英文單詞為“exam”,則x1+x2=
31
31
分析:由f(g(x1))=e,f(g(x2))=a,及對應(yīng)關(guān)系f:A→B可得g(x1)、g(x2)的值,再根據(jù)g(x)的表達(dá)式即可求出x1、x2的值.
解答:解:∵f(g(x1))=e,f(g(x2))=a,由對應(yīng)關(guān)系f:A→B可得:g(x1)=5,g(x2)=1.
∵函數(shù)g(x)=
log2(32-x)   (22<x<32)
x+4                (0≤x≤22)
,
∴當(dāng)0≤x≤22時,4≤g(x)≤26;當(dāng)22<x<32時,g(x)<log210<log216=4.
∴x1+4=5,log2(32-x2)=1,解得x1=1,x2=30.
∴x1+x2=31.
故答案為31.
點評:正確理解對應(yīng)法則和分段函數(shù)的意義是解題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

2、設(shè)集合A={x||x-2|≤2,x∈R},B={y|y=-x2,-1≤x≤2},則CR(A∩B)等于(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

1、設(shè)集合A={x|y=1gx},B{x|x<1},則A∪B等于(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)集合A={x|x<0},B={x|x2≤1},則A∩B=( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)集合A={x|x+1>0},集合B={x|x2-2<0}則A∪B等于(  )
A、{x|x<-1或x>
2
}
B、{x|-1<x<
2
}
C、{x|x>-
2
}
D、{x|x>-1}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)集合A={x|x2-3x+2=0},B={y|y=x2-2x+3,x∈A},現(xiàn)在我們定義對于任意兩個集合M,N的運算:M?N={x|x∈M∪N,且x?M∩N},則A?B=( 。
A、{1,2,3}B、{1,2}C、{2,3}D、{1,3}

查看答案和解析>>

同步練習(xí)冊答案