已知二次函數(shù)y=ax2+bx+c的圖象經(jīng)過(-1,0),存在常數(shù)a,b,c使得不等式x≤y≤
1
2
(1+x2)
對(duì)一切實(shí)數(shù)x都成立,求常數(shù)a,b,c的值.
∵f(x)的圖象過點(diǎn)(-1,0),∴a-b+c=0①
∵x≤f(x)≤
x2+1
2
對(duì)一切x∈R均成立,
∴當(dāng)x=1時(shí)也成立,即1≤a+b+c≤1.
故有a+b+c=1.②
由①②得b=
1
2
,c=
1
2
-a.
∴f(x)=ax2+
1
2
x+
1
2
-a.
故x≤ax2+
1
2
x+
1
2
-a≤
x2+1
2
對(duì)一切x∈R成立,
也即
ax2-
1
2
x+
1
2
-a≥0
(1-2a)x2-x+2a≥0
恒成立?
1≤0
2≤0
a>0
1-2a>0
?
1
4
-4a(
1
2
-a)≤0
1-8a(1-2a)≤0
a>0
1-2a>0.

解得a=
1
4
.∴c=
1
2
-a=
1
4

∴常數(shù)a,b,c的值為:a=
1
4
,b=
1
2
,c=
1
4
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知二次函數(shù)y=ax2+bx+c在(-1,+∞)上為減函數(shù),則f(0)>0,則直線ax+by+c=0不經(jīng)過第
 
象限.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

14、已知二次函數(shù)y=x2+ax+b-3,x∈R的圖象恒過點(diǎn)(1,0),則a2+b2的最小值為
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知二次函數(shù)y=x2+ax+5在區(qū)間[2,+∞)上是增函數(shù),則a的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知二次函數(shù)y=f(x)的圖象經(jīng)過原點(diǎn),且f(x-1)=f(x)+x-1.
(1)求f(x)的表達(dá)式.
(2)設(shè)F(x)=4f(ax)+3a2x-1(a>0且a≠1),當(dāng)x∈[-1,1]時(shí),F(xiàn)(x)有最大值14,試求a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

已知二次函數(shù)y=x2+ax+b-3,x∈R的圖象恒過點(diǎn)(1,0),則a2+b2的最小值為______.

查看答案和解析>>

同步練習(xí)冊(cè)答案