6、已知A={x|y=x,x∈R},B={y|y=x2,x∈R},則A∩B等于( 。
分析:利用集合的表示法知A是函數(shù)的定義域,B是函數(shù)的值域,求出A,B;利用交集的定義求出交集.
解答:解:∵A={x|y=x,x∈R}=R,
B={y|y=x2,x∈R}={y|y≥0}
∴A∩B={y|y≥0}
故選B
點評:本題考查集合的表示法、函數(shù)的定義域、值域、集合的運算.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知A={x|y=
x-1
+(x-2)0}
,B={x|-2<x-m<2},A∪B={x|x>-1}.
(1)求集合A和集合?RA;
(2)求實數(shù)m和集合A∩B.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

給出下列四個命題:
①已知f(x)+2f(
1
x
)=3x
,則函數(shù)g(x)=f(2x)在(0,1)上有唯一零點;
②對于函數(shù)f(x)=x
1
2
的定義域中任意的x1、x2(x1≠x2)必有f(
x1+x2
2
)<
f(x1)+f(x2)
2

③已知f(x)=|2-x+1-1|,a<b,f(a)<f(b),則必有0<f(b)<1;
④已知f(x)、g(x)是定義在R上的兩個函數(shù),對任意x、y∈R滿足關(guān)系式f(x+y)+f(x-y)=2f(x)•g(y),且f(0)=0,但x≠0時f(x)•g(x)≠0.則函數(shù)f(x)、g(x)都是奇函數(shù).
其中正確命題的序號是
①③
①③

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知A={x|y=
x-2
},B={y|y=x2-2}
,B={y|y=x2-2},則A∩B(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知A={x|y=x},B={y|y=x2},則A∩B等于( 。

查看答案和解析>>

同步練習(xí)冊答案