【題目】某高校在2019的自主招生考試中,考生筆試成績分布在,隨機抽取200名考生成績作為樣本研究,按照筆試成績分成5組,第1組成績?yōu)?/span>,第2組成績?yōu)?/span>,第3組成績?yōu)?/span>,第4組成績?yōu)?/span>,第5組成績?yōu)?/span>,樣本頻率分布直方圖如下:

1)估計全體考生成績的中位數(shù);

2)為了能選撥出最優(yōu)秀的學(xué)生,該校決定在筆試成績高的第3,4,5組中用分層抽樣抽取6名學(xué)生進入第二輪面試,從這6名學(xué)生中隨機抽取2名學(xué)生進行外語交流面試,求這2名學(xué)生均來自同一組的概率.

【答案】117250;(2

【解析】

1)由頻率分布直方圖中把頻率(矩形面積)等分的點對應(yīng)的成績?yōu)橹形粩?shù).

2)由頻率分布直方圖中的頻率求出從三組中各抽取的人數(shù),并編號,用列舉法寫出任取2人的事件,并列出來自同一組的事件,計算個數(shù)后可求概率.

1)樣本中位數(shù)為,從頻率分布直方圖可知,

從而有,解得

故全體考生成績的中位數(shù)約為17250

2)記A為事件這兩名學(xué)生均來自同一組”,用分層抽樣第3組抽取2人,第4組抽取3人,第5組抽取1人, 記第3組學(xué)生為,第4組學(xué)生為,第5組學(xué)生為;

從這6人中抽取2人有15種方法,分別為:

其中事件A共有4種,為

由古典概型公式得

故這兩名學(xué)生均來自同一組的概率為

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】給定整數(shù)(),設(shè)集合,記集合

(1)若,求集合;

(2)若構(gòu)成以為首項,()為公差的等差數(shù)列,求證:集合中的元素個數(shù)為;

(3)若構(gòu)成以為首項,為公比的等比數(shù)列,求集合中元素的個數(shù)及所有元素之和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

(1)求函數(shù)的單調(diào)區(qū)間;

(2)若對任意,函數(shù)的圖像不在軸上方,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列說法正確的是( )

A.將一組數(shù)據(jù)中的每個數(shù)據(jù)都乘以同一個非零常數(shù)a后,方差也變?yōu)樵瓉淼?/span>a

B.設(shè)有一個回歸方程,變量x增加1個單位時,y平均減少5個單位

C.線性相關(guān)系數(shù)r越大,兩個變量的線性相關(guān)性越強;反之,線性相關(guān)性越弱

D.在某項測量中,測量結(jié)果ξ服從正態(tài)分布N1,σ2)(σ0),則Pξ1)=0.5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】口袋中放有20個球,其中白球9個、紅球5個、黑球6個,現(xiàn)從中任取10個球,使得白球不少于個不多于7個,紅球不少于2個不多于5個、黑球不多于3個的取法種數(shù)是( )

A. 14 B. 24

C. 13 D. 36

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知雙曲線的頂點與焦點分別是橢圓的焦點與頂點,若雙曲線的兩條漸近線與橢圓的交點構(gòu)成的四邊形恰為正方形,則橢圓的離心率為( 。

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】近年來,我國工業(yè)經(jīng)濟發(fā)展迅速,工業(yè)增加值連年攀升,某研究機構(gòu)統(tǒng)計了近十年(從2008年到2017年)的工業(yè)增加值(萬億元),如下表:

年份

2008

2009

2010

2011

2012

2013

2014

2015

2016

2017

年份序號

1

2

3

4

5

6

7

8

9

10

工業(yè)增加值

13.2

13.8

16.5

19.5

20.9

22.2

23.4

23.7

24.8

28

依據(jù)表格數(shù)據(jù),得到下面的散點圖及一些統(tǒng)計量的值.

5.5

20.6

82.5

211.52

129.6

(1)根據(jù)散點圖和表中數(shù)據(jù),此研究機構(gòu)對工業(yè)增加值(萬億元)與年份序號的回歸方程類型進行了擬合實驗,研究人員甲采用函數(shù),其擬合指數(shù);研究人員乙采用函數(shù),其擬合指數(shù);研究人員丙采用線性函數(shù),請計算其擬合指數(shù),并用數(shù)據(jù)說明哪位研究人員的函數(shù)類型擬合效果最好.(注:相關(guān)系數(shù)與擬合指數(shù)滿足關(guān)系).

(2)根據(jù)(1)的判斷結(jié)果及統(tǒng)計值,建立關(guān)于的回歸方程(系數(shù)精確到0.01);

(3)預(yù)測到哪一年的工業(yè)增加值能突破30萬億元大關(guān).

附:樣本 的相關(guān)系數(shù),

,.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的離心率為分別為的左、右頂點,上異于的動點,面積的最大值為2.

(1)求橢圓的方程;

(2)證明:直線與直線的斜率乘積為定值;

(3)設(shè)直線,分別交直線兩點,以為直徑作圓,當(dāng)圓的面積最小時,求該圓的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,底面是邊長為3的正方形,平面,,與平面所成的角為.

(1)求證:平面平面;

(2)求二面角的余弦值.

查看答案和解析>>

同步練習(xí)冊答案