(1)選修4-2:矩陣與變換
已知向量在矩陣M=變換下得到的向量是
(Ⅰ)求m的值;
(Ⅱ)求曲線y2-x+y=0在矩陣M-1對應的線性變換作用下得到的曲線方程.
(2)選修4-4:極坐標與參數(shù)方程
在直角坐標平面內(nèi),以坐標原點O為極點,x軸的非負半軸為極軸建立極坐標系.已知點M的極坐標為(4),曲線C的參數(shù)方程為(α為參數(shù)).
(Ⅰ)求直線OM的直角坐標方程;
(Ⅱ)求點M到曲線C上的點的距離的最小值.
(3)選修4-5:不等式選講
設實數(shù)a、b滿足2a+b=9.
(Ⅰ)若|9-b|+|a|<3,求x的取值范圍;
(Ⅱ)若a,b>0,且z=a2b,求z的最大值.
【答案】分析:(1)(Ⅰ)由條件可得=,由此求得m的值.
(Ⅱ)先求出 M-1=,設曲線 y2-x+y=0上任意一點(x,y)在矩陣M-1所對應的線性變換作用下的像是(x′,y′),可得 ,代入曲線 y2-x+y=0化簡得到結果.
(2)解:(Ⅰ)由點M的極坐標求得得點M的直角坐標為(4,4),從而得到直線OM的直角坐標方程.
(Ⅱ)由曲線C的參數(shù)方程化為普通方程為(x-1)2+y2=2,求得圓心和半徑r,根據(jù)點M在曲線C外,可得點M到曲線C上的點的距離最小值為MA-r.
(3)把條件轉化為|6-b|=2|a|,不等式|9-b|+|a|<3可化為3|a|<3,即|a|<1,由此求得a的取值范圍.
(Ⅱ)因為a,b>0,可得 z=a2 b=a•a•b,利用基本不等式求得z的最大值.
解答:(1)解:(Ⅰ)因為   =,
所以,=,即 m=1.…(3分)
(Ⅱ)因為M=,所以 M-1=.…(4分)
設曲線 y2-x+y=0上任意一點(x,y)在矩陣M-1所對應的線性變換作用下的像是(x′,y′),
= =,…(5分)
所以 得 代入曲線 y2-x+y=0得 y′2=x′.…(6分)
由 (x,y)的任意性可知,
曲線 y2-x+y=0在矩陣 M-1對應的線性變換作用下的曲線方程為 y2=x.…(7分)
(2)解:(Ⅰ)由點M的極坐標為(4,)得點M的直角坐標為(4,4),
所以直線OM的直角坐標方程為y=x.…(3分)
(Ⅱ)由曲線C的參數(shù)方程 (α為參數(shù))
化為普通方程為 (x-1)2+y2=2,…(5分)
圓心為A(1,0),半徑為r=
由于點M在曲線C外,故點M到曲線C上的點的距離最小值為MA-r=5-.…(7分)
(3)解:(Ⅰ)由2a+b=9得9-b=2a,即|6-b|=2|a|.
所以|9-b|+|a|<3可化為3|a|<3,即|a|<1,解得-1<a<1.
所以a的取值范圍(-1,1).…(4分)
(Ⅱ)因為a,b>0,所以 z=a2 b=a•a•b≤=33=27,…(6分)
當且僅當a=b=3時,等號成立. 故z的最大值為27.…(7分)
點評:本小題主要考查矩陣與變換等基礎知識,考查運算求解能力.考查參數(shù)方程、極坐標方程等基礎知識,考查運算求解能力.考查絕對不等式、不等式證明等基礎知識,考查推理論證能力,考查化歸與轉化思想、數(shù)形結合思想.屬于中檔題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源:江蘇省丹陽市08-09學年高二下學期期末測試(理) 題型:解答題

 (本題是選做題,滿分28分,請在下面四個題目中選兩個作答,每小題14分,多做按前兩題給分)

A.(選修4-1:幾何證明選講)

如圖,△ABC是⊙O的內(nèi)接三角形,PA是⊙O的切線,PBAC于點E,交⊙O于點D,若PEPA,PD=1,BD=8,求線段BC的長.

 

 

 

 

 

 

B.(選修4-2:矩陣與變換)

在直角坐標系中,已知橢圓,矩陣陣,求在矩陣作用下變換所得到的圖形的面積.

C.(選修4-4:坐標系與參數(shù)方程)

直線(為參數(shù),為常數(shù)且)被以原點為極點,軸的正半軸為極軸,方程為的曲線所截,求截得的弦長.

D.(選修4-5:不等式選講)

,求證:.

 

 

 

 

 

查看答案和解析>>

同步練習冊答案