某廠使用A,B兩種零件裝配甲、乙兩種產(chǎn)品,該廠每月裝配甲產(chǎn)品最多250件,裝配乙產(chǎn)品最多120件,已知裝配一件甲產(chǎn)品需要4個(gè)月A零件,2個(gè)B零件,裝配一件乙產(chǎn)品需要6個(gè)A零件,8個(gè)B零件,某月能用的A零件最多為1400個(gè),能用的B林件最多為1200個(gè),已知甲產(chǎn)品每件利潤(rùn)1000元,乙產(chǎn)品每件利潤(rùn)2000元,設(shè)該月裝配甲、乙產(chǎn)品分別是x、y件,則用不等式組表示x、y滿足的條件是    (x,y∈N);該月最大利潤(rùn)為    萬(wàn)元.
【答案】分析:先設(shè)甲、乙兩種產(chǎn)品月產(chǎn)量分別為x、y件,寫出約束條件、目標(biāo)函數(shù),欲求生產(chǎn)收入最大值的范圍,即求可行域中的最優(yōu)解,在線性規(guī)劃的解答題中建議使用直線平移法求出最優(yōu)解,即將目標(biāo)函數(shù)看成是一條直線,分析目標(biāo)函數(shù)Z與直線截距的關(guān)系,進(jìn)而求出最優(yōu)解.注意:最后要將所求最優(yōu)解還原為實(shí)際問(wèn)題.
解答:解:設(shè)該月裝配甲、乙產(chǎn)品分別是x、y件,
約束條件是 
目標(biāo)函數(shù)是z=1000(x+2y)
由約束條件畫出可行域,如圖
將z=x+2y它變形為y=-x+,
這是斜率為-、隨z變化的一簇直線. 是直線在y軸上的截距,當(dāng) 最大時(shí)z最大,當(dāng)然直線要與可行域相交,即在滿足約束條件時(shí)目標(biāo)函數(shù)取得最大值.
解得 
在這個(gè)問(wèn)題中,使z=x+2y取得最大值的(x,y)是兩直線4x+6y=1400與2x+8y=120的交點(diǎn)(200,100)
∴z=1×200+2×100=400(千元)
答:每月生產(chǎn)甲180件,生產(chǎn)乙90件月生產(chǎn)收入最大,最大值為40萬(wàn)元.
故答案為:;40.
點(diǎn)評(píng):在解決線性規(guī)劃的應(yīng)用題時(shí),其步驟為:①分析題目中相關(guān)量的關(guān)系,列出不等式組,即約束條件⇒②由約束條件畫出可行域⇒③分析目標(biāo)函數(shù)Z與直線截距之間的關(guān)系⇒④使用平移直線法求出最優(yōu)解⇒⑤還原到現(xiàn)實(shí)問(wèn)題中.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

某廠使用A,B兩種零件裝配甲、乙兩種產(chǎn)品,該廠每月裝配甲產(chǎn)品最多250件,裝配乙產(chǎn)品最多120件,已知裝配一件甲產(chǎn)品需要4個(gè)月A零件,2個(gè)B零件,裝配一件乙產(chǎn)品需要6個(gè)A零件,8個(gè)B零件,某月能用的A零件最多為1400個(gè),能用的B林件最多為1200個(gè),已知甲產(chǎn)品每件利潤(rùn)1000元,乙產(chǎn)品每件利潤(rùn)2000元,設(shè)該月裝配甲、乙產(chǎn)品分別是x、y件,則用不等式組表示x、y滿足的條件是
 
(x,y∈N);該月最大利潤(rùn)為
 
萬(wàn)元.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:黃岡重點(diǎn)作業(yè)·高三數(shù)學(xué)(下) 題型:044

某廠使用A、B兩種零件裝配兩種產(chǎn)品X、Y,該廠的生產(chǎn)能力是月產(chǎn)X最多2500件,月產(chǎn)Y最多1200件,而組裝一件X需要4個(gè)A、2個(gè)B,組裝一件Y需要6個(gè)A、8個(gè)B.某個(gè)月,該廠能用的A最多有14000個(gè),B最多有12000個(gè),已知產(chǎn)品X每件利潤(rùn)1000元,Y每件利潤(rùn)2000元,欲使該月利潤(rùn)最高,需組裝X、Y產(chǎn)品各多少件?最高利潤(rùn)為多少萬(wàn)元?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:設(shè)計(jì)必修五數(shù)學(xué)蘇教版 蘇教版 題型:044

某廠使用AB兩種零件裝配甲、乙兩種產(chǎn)品,該廠的生產(chǎn)能力是月產(chǎn)甲最多2500件,月產(chǎn)乙最多1200件,而且裝一件甲需要4個(gè)A,2個(gè)B,且裝一件乙需要6個(gè)A,8個(gè)B.某個(gè)月,該廠能用的A最多有14000個(gè),B最多有12000個(gè),用不等式將甲、乙兩種產(chǎn)量之間的關(guān)系表示出來(lái).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

某廠使用A,B兩種零件裝配甲、乙兩種產(chǎn)品,該廠每月裝配甲產(chǎn)品最多250件,裝配乙產(chǎn)品最多120件,已知裝配一件甲產(chǎn)品需要4個(gè)月A零件,2個(gè)B零件,裝配一件乙產(chǎn)品需要6個(gè)A零件,8個(gè)B零件,某月能用的A零件最多為1400個(gè),能用的B林件最多為1200個(gè),已知甲產(chǎn)品每件利潤(rùn)1000元,乙產(chǎn)品每件利潤(rùn)2000元,設(shè)該月裝配甲、乙產(chǎn)品分別是x、y件,則用不等式組表示x、y滿足的條件是________(x,y∈N);該月最大利潤(rùn)為_(kāi)_______萬(wàn)元.

查看答案和解析>>

同步練習(xí)冊(cè)答案