已知函數(shù)f(x)=1-3(x-1)+3(x-1)2-(x-1)3,則f-1(8)=________.

0
分析:利用二項(xiàng)式定理把f(x)化簡得f(x),欲求f-1(8),令f(x)=8,利用函數(shù)與反函數(shù)的定義域和值域的對應(yīng)關(guān)系,求得x的值即為f-1(8).
解答:利用二項(xiàng)式定理把f(x)化簡得:f(x)=[1-(x-1)]3)=(2-x)3
令f(x)=8,即(2-x)3=8?x=0
則f-1(8)=0
故答案為0.
點(diǎn)評:本題考查反函數(shù),本題考查函數(shù)與反函數(shù)的定義域和值域的對應(yīng)關(guān)系,考查計(jì)算能力,邏輯推理能力,是基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
1
|x|
,g(x)=1+
x+|x|
2
,若f(x)>g(x),則實(shí)數(shù)x的取值范圍是( 。
A、(-∞,-1)∪(0,1)
B、(-∞,-1)∪(0,
-1+
5
2
)
C、(-1,0)∪(
-1+
5
2
,+∞)
D、(-1,0)∪(0,
-1+
5
2
)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
1,x∈Q
0,x∉Q
,則f[f(π)]=( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
1-x
ax
+lnx(a>0)

(1)若函數(shù)f(x)在[1,+∞)上為增函數(shù),求實(shí)數(shù)a的取值范圍;
(2)當(dāng)a=1時,求f(x)在[
1
2
,2
]上的最大值和最小值;
(3)當(dāng)a=1時,求證對任意大于1的正整數(shù)n,lnn>
1
2
+
1
3
+
1
4
+
+
1
n
恒成立.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=1+cos2x-2sin2(x-
π
6
),其中x∈R,則下列結(jié)論中正確的是(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=1+logax(a>0,a≠1),滿足f(9)=3,則f-1(log92)的值是( 。

查看答案和解析>>

同步練習(xí)冊答案