17.已知x,y滿足不等式組$\left\{\begin{array}{l}{x-y+2≥0}\\{x+y-4≥0}\\{2x-y-5≤0}\end{array}\right.$,
求(1)z=x+2y的最大值;
(2)z=x2+y2-10y+25的最小值.

分析 (1)作出不等式組對(duì)應(yīng)的平面區(qū)域,利用直線平行進(jìn)行求解即可.
(2)z的幾何意義是兩點(diǎn)間的距離的平方,利用點(diǎn)到直線的距離公式進(jìn)行求解即可.

解答 解:(1)由約束條件$\left\{\begin{array}{l}{x-y+2≥0}\\{x+y-4≥0}\\{2x-y-5≤0}\end{array}\right.$表示的可行域如下圖所示,

由z=x+2y,得y=-$\frac{1}{2}x+\frac{z}{2}$,
平移直線y=-$\frac{1}{2}x+\frac{z}{2}$,由圖象可知當(dāng)直線y=-$\frac{1}{2}x+\frac{z}{2}$經(jīng)過(guò)點(diǎn)A時(shí),直線y=-$\frac{1}{2}x+\frac{z}{2}$的截距最大,此時(shí)z最大,
由$\left\{\begin{array}{l}{x-y+2=0}\\{2x-y-5=0}\end{array}\right.$得$\left\{\begin{array}{l}{x=7}\\{y=9}\end{array}\right.$,即A(7,9),此時(shí)z=7+2×9=25;
(2)z=x2+y2-10y+25=x2+(y-5)2,z的幾何意義為點(diǎn)P(x,y)到點(diǎn)(0,5)的距離的平方;
由圖知,最小值為(0,5)到直線x-y+2=0的距離的平方,
即d2=($\frac{|0-5+2|}{\sqrt{2}}$)2=$\frac{9}{2}$.經(jīng)檢驗(yàn),垂足在線段AC上.

點(diǎn)評(píng) 本題主要考查線性規(guī)劃的應(yīng)用,可以直線平移以及兩點(diǎn)間的距離公式是解決本題的關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

7.7人排成一排,甲、乙兩人必須相鄰,且甲、乙都不與丙相鄰,則不同的排法有( 。┓N.
A.960種B.840種C.720種D.600種

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

8.若集合A=[-2,2],B=(a,+∞),A∩B=A,則實(shí)數(shù)a的取值范圍是a<-2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

5.設(shè)2016∈{x,$\sqrt{{x}^{2}}$,x2},則滿足條件的所有x組成的集合的真子集的個(gè)數(shù)是15個(gè).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

12.?dāng)?shù)列{an}定義如下:a1=1,a2=3,${a_{n+2}}=\frac{{2(n+1){a_{n+1}}}}{n+2}-\frac{n}{n+2}{a_n}$,n=1,2,….若${a_m}>4+\frac{2016}{2017}$,則正整數(shù)m的最小值為8069.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

2.橢圓$\frac{x^2}{{{{10}^{\;}}}}+\frac{y^2}{{{m^{\;}}}}=1$的焦距為6,則m的值為( 。
A.m=1B.m=19C.m=1 或 m=19D.m=4或m=16

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

9.設(shè)橢圓$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$的左、右焦點(diǎn)分別是F1,F(xiàn)2,如果在橢圓上存在一點(diǎn)p,使∠F1PF2為鈍角,則橢圓離心率的取值范圍是$({\frac{{\sqrt{2}}}{2},1})$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

6.已知函數(shù)f(x)=x2-2ax+3在區(qū)間[2,3]上是單調(diào)函數(shù),則a的取值范圍是(-∞,2]∪[3,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

7.計(jì)算
(1)$(0.027{)^{-\frac{1}{3}}}-(-\frac{1}{7}{)^{-2}}+(2\frac{7}{9}{)^{\frac{1}{2}}}-(\sqrt{2}-1{)^0}$
(2)log2$\frac{{\sqrt{7}}}{{\sqrt{48}}}+{log_2}12-\frac{1}{2}{log_2}42-{log_2}$2.

查看答案和解析>>

同步練習(xí)冊(cè)答案