【題目】已知橢圓的方程為為橢圓的左右頂點,為橢圓上不同于.的動點,直線與直線,分別交于,兩點,若,則過,三點的圓必過軸上不同于點的定點,其坐標為__________.

【答案】

【解析】

利用橢圓的性質(zhì)首先證明,然后結(jié)合題意設(shè)出直線方程,由點的坐標確定圓的直徑所在的位置,最后由直線垂直的充分必要條件可得點D的坐標.

首先證明橢圓的一個性質(zhì):

橢圓,點是橢圓上關(guān)于原點對稱的兩點,是橢圓上異于上的一個點,則.

證明如下:設(shè),,,

由于點是橢圓上的兩點,故,

兩式作差可得:

此時 .

故結(jié)論成立.

回到本題,由題意可知:,

設(shè)直線PA的方程為:,則,

設(shè)直線PB的方程為:,則

,

為外接圓的直徑,

設(shè)所求的點為,

則:,

,解得:,(舍去).

綜上可得:所求點的坐標為:.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】2018年12月28日,成雅鐵路開通運營,使川西多個市縣進入動車時代,融入全國高鐵網(wǎng),這對推動沿線經(jīng)濟社會協(xié)調(diào)健康發(fā)展具有重要意義.在試運行期間,鐵道部門計劃在成都和雅安兩城之間開通高速列車,假設(shè)每天7:00-8:00,8:00-9:00兩個時間段內(nèi)各發(fā)一趟列車由雅安到成都(兩車發(fā)車情況互不影響),雅安發(fā)車時間及其概率如下表所示:

第一趟列車

第二趟列車

發(fā)車時間

7:10

7:30

7:50

8:10

8:30

8:50

概率

0.2

0.3

0.5

0.2

0.3

0.5

若小王、小李二人打算乘動車從雅安到成都游玩,假設(shè)他們到達雅安火車站候車的時間分別是周六7:00和7:20(只考慮候車時間,不考慮其它因素).

(1)求小王候車10分鐘且小李候車30分鐘的概率;

(2)設(shè)小李候車所需時間為隨機變量,求的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓經(jīng)過點離心率為

(Ⅰ)求橢圓的方程;

(Ⅱ)過點的直線交橢圓于兩點,為橢圓的左焦點,若,求直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知.

(1)當時,求的極值;

(2)若有2個不同零點,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】一個不透明的箱子中裝有大小形狀相同的5個小球,其中2個白球標號分別為,3個紅球標號分別為,,,現(xiàn)從箱子中隨機地一次取出兩個球.

(1)求取出的兩個球都是白球的概率;

(2)求取出的兩個球至少有一個是白球的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某小區(qū)為了提高小區(qū)內(nèi)人員的讀書興趣,特舉辦讀書活動,準備進一定量的書籍豐富小區(qū)圖書站,由于不同年齡段需要看不同類型的書籍,為了合理配備資源,現(xiàn)對小區(qū)看書人員進行年齡調(diào)查,隨機抽取了一天40名讀書者進行調(diào)查. 將他們的年齡分成6段:

,

后得到如圖所示的頻率分布直方圖,問:

1)在40名讀書者中年齡分布在的人數(shù);

2)估計40名讀書者年齡的平均數(shù)和中位數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)設(shè).

(Ⅰ)若處取得極值,,求函數(shù)的單調(diào)區(qū)間;

(Ⅱ)若時函數(shù)有兩個不同的零點、.

的取值范圍;②求證:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】四棱錐中,底面是菱形,.

(1)求證:

(2)若的中點,求點到平面的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標系中,橢圓的參數(shù)方程為為參數(shù)).以坐標原點為極點,軸的正半軸為極軸建立極坐標系,直線的極坐標方程為.

(1)求橢圓的極坐標方程和直線的直角坐標方程;

(2)若點的極坐標為,直線與橢圓相交于,兩點,求的值.

查看答案和解析>>

同步練習冊答案