我們規(guī)定:對(duì)于任意實(shí)數(shù)A,若存在數(shù)列{an}和實(shí)數(shù)x(x≠0),使得A=a1+a2x+a3x2+…anxn-1,則稱數(shù)A可以表示成x進(jìn)制形式,簡(jiǎn)記為A=
.
x~(a1)(a2)(a3)…(an-1)(an)
.如:A=
.
2~(-1)(3)(-2)(1)
,則表示A是一個(gè)2進(jìn)制形式的數(shù),且A=-1+3×2+(-2)×22+1×23=5.
(I)已知m=(1-2x)(1+3x2)(其中x≠0),試將m表示成x進(jìn)制的簡(jiǎn)記形式;
(II)記bn=
.
2~(a1)(a2)(a3)…(an-1)(an)
(n∈N*)
,若{an}是等差數(shù)列,且滿足a1+a2=3,a3+a4=7,求bn=9217時(shí)n的值.
分析:(Ⅰ)由m=(1-2x)(1+3x2)=1-2x+3x2-6x3,能將m表示成x進(jìn)制的簡(jiǎn)記形式.
(Ⅱ)由{an}是等差數(shù)列,即已知條件利用通項(xiàng)公式即可得出an,利用“錯(cuò)位相減法”即可得出bn,進(jìn)而解出n.
解答:解:(I)由m=(1-2x)(1+3x2)=1-2x+3x2-6x3=
.
x~(1)(-2)(3)(-6)

(Ⅱ)∵{an}是等差數(shù)列,設(shè)公差為d,又a1+a2=3,a3+a4=7,
a1+a1+d=3
2a1+5d=7
,解得
a1=1
d=1

∴an=1+(n-1)×1=n.
bn=1+2×21+3×22+…+n×2n-1,
2bn=1×2+2×22+3×23+…+(n-1)×2n-1+n×2n
兩式相減得-bn=1+2+22+…+2n-1-n×2n
-bn=
2n-1
2-1
-n×2n
,
bn=(n-1)×2n+1
又bn=9217,∴(n-1)×2n+1=9217,解得n=10.
點(diǎn)評(píng):本題考查數(shù)列的遞推公式即新定義,解題時(shí)要認(rèn)真審題,仔細(xì)解答,注意挖掘題設(shè)的隱含條件,合理地進(jìn)行等價(jià)轉(zhuǎn)化.?dāng)?shù)列掌握等差數(shù)列和等比數(shù)列的通項(xiàng)公式和前n項(xiàng)和公式及其“錯(cuò)位相減法”是解題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(2008•奉賢區(qū)模擬)我們規(guī)定:對(duì)于任意實(shí)數(shù)A,若存在數(shù)列{an}和實(shí)數(shù)x(x≠0),使得A=a1+a2x+a3x2+…+anxn-1,則稱數(shù)A可以表示成x進(jìn)制形式,簡(jiǎn)記為:A=
.
x\~(a1)(a2)(a3)…(an-1)(an)
.如:A=
.
2\~(-1)(3)(-2)(1)
,則表示A是一個(gè)2進(jìn)制形式的數(shù),且A=-1+3×2+(-2)×22+1×23=5.
(1)已知m=(1-2x)(1+3x2)(其中x≠0),試將m表示成x進(jìn)制的簡(jiǎn)記形式.
(2)若數(shù)列{an}滿足a1=2,ak+1=
1
1-ak
,k∈N*
,bn=
.
2\~(a1)(a2)(a3)…(a3n-2)(a3n-1)(a3n)
(n∈N*),是否存在實(shí)常數(shù)p和q,對(duì)于任意的n∈N*,bn=p•8n+q總成立?若存在,求出p和q;若不存在,說明理由.
(3)若常數(shù)t滿足t≠0且t>-1,dn=
.
t\~(
C
1
n
)(
C
2
n
)(
C
3
n
)…(
C
n-1
n
)(
C
n
n
)
,求
lim
n→∞
dn
dn+1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2008-2009學(xué)年度高三數(shù)學(xué)模擬試題分類匯編:數(shù)列 題型:044

我們規(guī)定:對(duì)于任意實(shí)數(shù)A,若存在數(shù)列{an}和實(shí)數(shù)x(x≠0),使得A=a1+a2x+a3x2+…+anxn-1,則稱數(shù)A可以表示成x進(jìn)制形式,簡(jiǎn)記為:

.如:,則表示A是一個(gè)2進(jìn)制形式的數(shù),且A=-1+3×2+(-2)×22+1×23=5.

(1)已知m=(1-2x)(1+3x2)(其中x≠0),試將m表示成x進(jìn)制的簡(jiǎn)記形式.

(2)若數(shù)列{an}滿足a1=2,,

,是否存在實(shí)常數(shù)p和q,對(duì)于任意的n∈N*,bn=p·8n+q總成立?若存在,求出p和q;若不存在,說明理由.

(3)若常數(shù)t滿足t≠0且t>-1,,求

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

我們規(guī)定:對(duì)于任意實(shí)數(shù)A,若存在數(shù)列{an}和實(shí)數(shù)x(x≠0),使得A=a1+a2x+a3x2+…+anxn-1,則稱數(shù)A可以表示成x進(jìn)制形式,簡(jiǎn)記為:數(shù)學(xué)公式.如:數(shù)學(xué)公式,則表示A是一個(gè)2進(jìn)制形式的數(shù),且A=-1+3×2+(-2)×22+1×23=5.
(1)已知m=(1-2x)(1+3x2)(其中x≠0),試將m表示成x進(jìn)制的簡(jiǎn)記形式.
(2)若數(shù)列{an}滿足a1=2,數(shù)學(xué)公式數(shù)學(xué)公式(n∈N*),是否存在實(shí)常數(shù)p和q,對(duì)于任意的n∈N*,bn=p•8n+q總成立?若存在,求出p和q;若不存在,說明理由.
(3)若常數(shù)t滿足t≠0且t>-1,數(shù)學(xué)公式,求數(shù)學(xué)公式

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:奉賢區(qū)模擬 題型:解答題

我們規(guī)定:對(duì)于任意實(shí)數(shù)A,若存在數(shù)列{an}和實(shí)數(shù)x(x≠0),使得A=a1+a2x+a3x2+…+anxn-1,則稱數(shù)A可以表示成x進(jìn)制形式,簡(jiǎn)記為:A=
.
x\~(a1)(a2)(a3)…(an-1)(an)
.如:A=
.
2\~(-1)(3)(-2)(1)
,則表示A是一個(gè)2進(jìn)制形式的數(shù),且A=-1+3×2+(-2)×22+1×23=5.
(1)已知m=(1-2x)(1+3x2)(其中x≠0),試將m表示成x進(jìn)制的簡(jiǎn)記形式.
(2)若數(shù)列{an}滿足a1=2,ak+1=
1
1-ak
,k∈N*
,bn=
.
2\~(a1)(a2)(a3)…(a3n-2)(a3n-1)(a3n)
(n∈N*),是否存在實(shí)常數(shù)p和q,對(duì)于任意的n∈N*,bn=p•8n+q總成立?若存在,求出p和q;若不存在,說明理由.
(3)若常數(shù)t滿足t≠0且t>-1,dn=
.
t\~(
C1n
)(
C2n
)(
C3n
)…(
Cn-1n
)(
Cnn
)
,求
lim
n→∞
dn
dn+1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2008年上海市奉賢區(qū)高三聯(lián)考數(shù)學(xué)試卷(理科)(解析版) 題型:解答題

我們規(guī)定:對(duì)于任意實(shí)數(shù)A,若存在數(shù)列{an}和實(shí)數(shù)x(x≠0),使得A=a1+a2x+a3x2+…+anxn-1,則稱數(shù)A可以表示成x進(jìn)制形式,簡(jiǎn)記為:.如:,則表示A是一個(gè)2進(jìn)制形式的數(shù),且A=-1+3×2+(-2)×22+1×23=5.
(1)已知m=(1-2x)(1+3x2)(其中x≠0),試將m表示成x進(jìn)制的簡(jiǎn)記形式.
(2)若數(shù)列{an}滿足a1=2,(n∈N*),是否存在實(shí)常數(shù)p和q,對(duì)于任意的n∈N*,bn=p•8n+q總成立?若存在,求出p和q;若不存在,說明理由.
(3)若常數(shù)t滿足t≠0且t>-1,,求

查看答案和解析>>

同步練習(xí)冊(cè)答案