已知函數(shù)的部分圖像如圖所示.
(1)求函數(shù)f(x)的解析式,并寫出f(x)的單調(diào)減區(qū)間;
(2)的內(nèi)角分別是A,B,C.若f(A)=1,,求sinC的值.
(1)(2)
解析試題分析:(1)根據(jù)函數(shù)的圖像可以得到函數(shù)f(x)的周期與最大值,則可以求的A,的值,在帶入函數(shù)的一個最值點(diǎn)坐標(biāo)即可求出的值(注意范圍),就可以得到函數(shù)f(x)解析式,再根據(jù)正弦函數(shù)sinx的單調(diào)區(qū)間和復(fù)合函數(shù)單調(diào)性的判斷(同增異減),即可得到函數(shù)f(x)的單調(diào)區(qū)間.
(2)把f(A)=1帶入函數(shù)解析式即可求的A角的大小,在根據(jù)三角形內(nèi)角和為1800和正弦的和差角公式就可以求出sinC的值.
試題解析:
(1)由圖象最高點(diǎn)得A=1, 1分
由周期. 2分
當(dāng)時,,可得,
因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/2b/2/1f4ex3.png" style="vertical-align:middle;" />,所以.
. 4分
由圖象可得的單調(diào)減區(qū)間為. 6分
(2)由(I)可知,,
,,
. 8分
. 9分
10分
.
. 12分
考點(diǎn):三角函數(shù)圖像特殊角度的三角函數(shù)值正弦和差角公式
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù),
(l)求函數(shù)的最小正周期;
(2)當(dāng)時,求函數(shù)f(x)的單調(diào)區(qū)間。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè)函數(shù),其中向量,,.
(1)求的單調(diào)遞增區(qū)間;
(2)在中,分別是角的對邊,已知,的面積為,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
在已知函數(shù)f(x)=Asin(ωx+φ),x∈R(其中A>0,ω>0,0<φ<)的圖象與x軸的交點(diǎn)中,相鄰兩個交點(diǎn)之間的距離為,且圖象上一個最低點(diǎn)為M(,-2).
(1)求f(x)的解析式;
(2)當(dāng)x∈[,]時,求f(x)的值域.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知向量(為常數(shù)且),函數(shù)在上的最大值為.
(1)求實(shí)數(shù)的值;
(2)把函數(shù)的圖象向右平移個單位,可得函數(shù)的圖象,若在上為增函數(shù),求取最大值時的單調(diào)增區(qū)間.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)
(1)在給定的平面直角坐標(biāo)系中,畫函數(shù),的簡圖;
(2)求的單調(diào)增區(qū)間;
(3) 函數(shù)的圖象只經(jīng)過怎樣的平移變換就可得到的圖象?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)f(x)=2sin.
(1)求函數(shù)y=f(x)的最小正周期及單調(diào)遞增區(qū)間;
(2)若f=-,求f(x0)的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com