【題目】已知函數(shù),函數(shù)的圖象在點處的切線方程為.
(1)討論的導函數(shù)的零點的個數(shù);
(2)若,且在上的最小值為,證明:當時,.
【答案】(1)當時,存在唯一零點,當時,無零點.(2)證明見解析
【解析】
(1)由題意得的定義域為,,然后分和兩種情況討論即可
(2)先由條件求出,然后要證,即證,令,然后利用導數(shù)得出即可
(1)由題意,得的定義域為,.
顯然當時,恒成立,無零點.
當時,取,
則,即單調(diào)遞增,
又,,
所以導函數(shù)存在唯一零點.
故當時,存在唯一零點,當時,無零點.
(2)由(1)知,當時,單調(diào)遞增,所以,所以.
因為,函數(shù)的圖象在點處的切線方程為,
所以,所以.
又,所以,所以.
根據(jù)題意,要證,即證,只需證.
令,則.
令,則,
所以在上單調(diào)遞增.
又,,
所以有唯一的零點.
當時,,即,單調(diào)遞減,
當時,,即,單調(diào)遞增,
所以.
又因為,所以,所以,
故.
科目:高中數(shù)學 來源: 題型:
【題目】直線l:x﹣ty+1=0(t>0)和拋物線C:y2=4x相交于不同兩點A、B,設AB的中點為M,拋物線C的焦點為F,以MF為直徑的圓與直線l相交另一點為N,且滿足|MN||NF|,則直線l的方程為_____.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】從分別寫有數(shù)字1,2,3,4,5的5張卡片中隨機抽取1張,放回后再隨機抽取1張,則抽得的第一張卡片上的數(shù)字不大于第二張卡片的概率是( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某公司準備上市一款新型轎車零配件,上市之前擬在其一個下屬4S店進行連續(xù)30天的試銷.定價為1000元/件.試銷結(jié)束后統(tǒng)計得到該4S店這30天內(nèi)的日銷售量(單位:件)的數(shù)據(jù)如下表:
日銷售量 | 40 | 60 | 80 | 100 |
頻數(shù) | 9 | 12 | 6 | 3 |
(1)若該4S店試銷期間每個零件的進價為650元/件,求試銷連續(xù)30天中該零件日銷售總利潤不低于24500元的頻率;
(2)試銷結(jié)束后,這款零件正式上市,每個定價仍為1000元,但生產(chǎn)公司對該款零件不零售,只提供零件的整箱批發(fā),大箱每箱有60件,批發(fā)價為550元/件;小箱每箱有45件,批發(fā)價為600元/件.該4S店決定每天批發(fā)兩箱,根據(jù)公司規(guī)定,當天沒銷售出的零件按批發(fā)價的9折轉(zhuǎn)給該公司的另一下屬4S店.假設該4店試銷后的連續(xù)30天的日銷售量(單位:件)的數(shù)據(jù)如下表:
日銷售量 | 50 | 70 | 90 | 110 |
頻數(shù) | 5 | 15 | 8 | 2 |
(。┰O該4S店試銷結(jié)束后連續(xù)30天每天批發(fā)兩大箱,這30天這款零件的總利潤;
(ⅱ)以總利潤作為決策依據(jù),該4S店試銷結(jié)束后連續(xù)30天每天應該批發(fā)兩大箱還是兩小箱?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在平面直角坐標系中,將曲線:上的點按坐標變換,得到曲線,為與軸負半軸的交點,經(jīng)過點且傾斜角為的直線與曲線的另一個交點為,與曲線的交點分別為,(點在第二象限).
(Ⅰ)寫出曲線的普通方程及直線的參數(shù)方程;
(Ⅱ)求的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù),函數(shù)的圖象在點處的切線方程為.
(1)討論的導函數(shù)的零點的個數(shù);
(2)若,且在上的最小值為,證明:當時,.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某科研小組為了研究一種治療新冠肺炎患者的新藥的效果,選50名患者服藥一段時間后,記錄了這些患者的生理指標和的數(shù)據(jù),并統(tǒng)計得到如下的列聯(lián)表(不完整):
合計 | |||
12 | 36 | ||
7 | |||
合計 |
其中在生理指標的人中,設組為生理指標的人,組為生理指標的人,他們服用這種藥物后的康復時間(單位:天)記錄如下:
組:10,11,12,13,14,15,16
組:12,13,15,16,17,14,25
(Ⅰ)填寫上表,并判斷是否有95%的把握認為患者的兩項生理指標和有關系;
(Ⅱ)從,兩組隨機各選1人,組選出的人記為甲,組選出的人記為乙,求甲的康復時間比乙的康復時間長的概率.
附:,其中.
0.050 | 0.010 | 0.001 | |
3.841 | 6.635 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知為坐標原點,,,,若.
⑴ 求函數(shù)的最小正周期和單調(diào)遞增區(qū)間;
⑵ 將函數(shù)的圖象上各點的橫坐標伸長為原來的倍(縱坐標不變),再將得到的圖象向左平移個單位,得到函數(shù)的圖象,求函數(shù)在上的最小值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com