如圖,三棱錐A-BPC中,AP⊥PC,AC⊥BC,M為AB中點(diǎn),D為PB中點(diǎn),且△PMB為正三角形.

(1)求證:DM∥平面APC;

(2)求證:平面ABC⊥平面APC;

(3)若BC=4,AB=20,求三棱錐D-BCM的體積.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在如圖所示的幾何體中,平行四邊形ABCD的頂點(diǎn)都在以AC為直徑的圓O上,AD=CD=DP=a,AP=CP=
2
a,DP∥AM,且AM=
1
2
DP,E,F(xiàn)分別為BP,CP的中點(diǎn).
(I)證明:EF∥平面ADP;
(II)求三棱錐M-ABP的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

在如圖所示的幾何體中,平行四邊形ABCD的頂點(diǎn)都在以AC為直徑的圓O上,AD=CD=DP=a,AP=CP=數(shù)學(xué)公式a,DP∥AM,且AM=數(shù)學(xué)公式DP,E,F(xiàn)分別為BP,CP的中點(diǎn).
(I)證明:EF∥平面ADP;
(II)求三棱錐M-ABP的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,在三棱錐P-ABC中,AC=BC=2,∠ACB=90°,AP=BP=AB,PCAC.

(Ⅰ)求證:PCA;

(Ⅱ)求二面角B-AP-C的大。

(Ⅲ)求點(diǎn)C到平面APB的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(理)如圖,在四棱錐P—ABCD中,平面PAD⊥平面ABCD,∠ABC=∠BCD=90°,PA=PD=DC=CB=AB,E是BP的中點(diǎn).

(1)求證:EC∥平面APD;

(2)求BP與平面ABCD所成角的正切值;

(3)求二面角PABD的大小.

(文)如圖,在三棱錐P—ABC中,PA⊥AB,PA⊥AC,AB⊥AC,PA=AC=2,AB=1,M為PC的中點(diǎn).

(1)求證:平面PCB⊥平面MAB;

(2)求點(diǎn)A到平面PBC的距離;

(3)求二面角CPBA的正切值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2009-2010學(xué)年度新課標(biāo)高三上學(xué)期數(shù)學(xué)單元測(cè)試8-文科-立體幾何初步 題型:解答題

 (12分)如圖甲,正三角形ABC的邊長(zhǎng)為4,CD是AB邊上的高,E、F分別是AC和BC邊的中點(diǎn),先將△ABC沿CD折疊成直二面角A-DC-B(如圖乙),在乙圖中

   (Ⅰ)求二面角E-DF-C的余弦值;

   (Ⅱ)在線段BC上找一點(diǎn)P,使AP⊥DE,并求BP.

   (Ⅲ)求三棱錐D-ABC外接球的表面積.(只需用數(shù)字回答,可不寫(xiě)過(guò)程)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

查看答案和解析>>

同步練習(xí)冊(cè)答案