設(shè)P是一個(gè)數(shù)集,且至少含有三個(gè)數(shù),若對(duì)任意a,b∈P(a≠b)都有a+b,a-b、ab、
ab
∈P
(除數(shù)b≠0 ),則稱P是一個(gè)數(shù)域.
例如:有理數(shù)集Q 是數(shù)域,實(shí)數(shù)集R也是數(shù)域.
(1)求證:整數(shù)集Z不是數(shù)域;
(2)求證:數(shù)域必含有0,1兩個(gè)數(shù);
(3)若有理數(shù)集Q⊆M,那么數(shù)集M 是否一定為數(shù)域?說(shuō)明理由.
分析:本題考查的主要知識(shí)點(diǎn)是新定義概念的理解能力.我們可根據(jù)已知中對(duì)數(shù)域的定義:設(shè)P是一個(gè)數(shù)集,且至少含有兩個(gè)數(shù),若對(duì)任意a、b∈P,都有a+b、a-b、ab、
a
b
∈P(除數(shù)b≠0)則稱P是一個(gè)數(shù)域,對(duì)3個(gè)命題逐一進(jìn)行判斷證明即可.
解答:證明:(1)若整數(shù)集Z是數(shù)域,…(1分)
則由1∈Z,2∈Z,得
1
2
∈Z,…(3分)
1
2
 Z矛盾.                    …(4分)
故整數(shù)集Z是數(shù)域不可能,即整數(shù)集Z不是數(shù)域   …(5分)
(2)設(shè)P是一個(gè)數(shù)域,a,b∈P,a≠b,ab≠0
(a+b)∈P , 
a+b
b
∈P , 
a
b
∈P
 

所以
a+b
b
-
a
b
=1∈P
 …(8分)
同理可得,
a
b
-
a+b
b
=-1∈P
 …(9分)
所以-1+1=0∈P                   …(10分)
故數(shù)域必含有0,1兩個(gè)數(shù)
(3)數(shù)集M 
不一定為數(shù)域.                        …(11分)
例如:①若M=R,則Q⊆M,且M 是數(shù)域;      …(12分)
②若M={x|x∈Q,或x=
2
 }則Q⊆M,但M 不是數(shù)域;…(13分)
假設(shè)M是數(shù)域,則由-1∈M,
2
∈M,得-1×
2
=-
2
∈M
 

所以-
2
∈Q
 與-
2
∉Q
 矛盾!…(15分)
綜上所述:數(shù)集M 不一定為數(shù)域.             …(16分)
點(diǎn)評(píng):這是一道新運(yùn)算類的題目,其特點(diǎn)一般是“新”而不“難”,處理的方法一般為:根據(jù)新運(yùn)算的定義,將已知中的3個(gè)命題代入進(jìn)行檢驗(yàn),要滿足對(duì)四種運(yùn)算的封閉,只有一個(gè)個(gè)來(lái)檢驗(yàn),如(1)對(duì)除法如
1
2
∉Z
不滿足,所以排除.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

給定平面上的點(diǎn)集P={P1,P2,…,P1994},P中任三點(diǎn)均不共線,將P中的所有的點(diǎn)任意分成83組,使得每組至少有3個(gè)點(diǎn),且每點(diǎn)恰好屬于一組,然后將在同一組的任兩點(diǎn)用一條線段相連,不在同一組的兩點(diǎn)不連線段,這樣得到一個(gè)圖案G,不同的分組方式得到不同的圖案,將圖案G中所含的以P中的點(diǎn)為頂點(diǎn)的三角形個(gè)數(shù)記為m(G).
(1)求m(G)的最小值m0
(2)設(shè)G*是使m(G*)=m0的一個(gè)圖案,若G*中的線段(指以P的點(diǎn)為端點(diǎn)的線段)用4種顏色染色,每條線段恰好染一種顏色.證明存在一個(gè)染色方案,使G*染色后不含以P的點(diǎn)為頂點(diǎn)的三邊顏色相同的三角形.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2013年全國(guó)高校自主招生數(shù)學(xué)模擬試卷(十七)(解析版) 題型:解答題

給定平面上的點(diǎn)集P={P1,P2,…,P1994},P中任三點(diǎn)均不共線,將P中的所有的點(diǎn)任意分成83組,使得每組至少有3個(gè)點(diǎn),且每點(diǎn)恰好屬于一組,然后將在同一組的任兩點(diǎn)用一條線段相連,不在同一組的兩點(diǎn)不連線段,這樣得到一個(gè)圖案G,不同的分組方式得到不同的圖案,將圖案G中所含的以P中的點(diǎn)為頂點(diǎn)的三角形個(gè)數(shù)記為m(G).
(1)求m(G)的最小值m
(2)設(shè)G*是使m(G*)=m的一個(gè)圖案,若G*中的線段(指以P的點(diǎn)為端點(diǎn)的線段)用4種顏色染色,每條線段恰好染一種顏色.證明存在一個(gè)染色方案,使G*染色后不含以P的點(diǎn)為頂點(diǎn)的三邊顏色相同的三角形.

查看答案和解析>>

同步練習(xí)冊(cè)答案