定義在R上的奇函數(shù)f(x)滿足:當(dāng)x>0時,f(x)=2x+log2x,則在R上,函數(shù)f(x)零點的個數(shù)為
 
考點:函數(shù)零點的判定定理
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:根據(jù)函數(shù)單調(diào)性和奇偶性的對稱性,即可求出函數(shù)f(x)的零點個數(shù).
解答: 解:∵f(x)是定義在R上的奇函數(shù),∴f(0)=0,即x=0是函數(shù)f(x)的一個零點,
當(dāng)x>0時,f(x)=2x+log2x,為增函數(shù),
∵f(1)=2>0,f(
1
4
)=
42
-2<0
,∴當(dāng)x>0時,f(x)有一個零點,
則根據(jù)奇函數(shù)的對稱軸可知,當(dāng)x<0時,f(x)也有一個零點,
故函數(shù)f(x)零點的個數(shù)為3個,
故答案為:3
點評:本題主要考查函數(shù)零點個數(shù)的判斷,根據(jù)函數(shù)奇偶性的對稱性以及函數(shù)零點的判斷條件是解決本題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知
a
=(2cosx+2
3
sinx,1),
b
=(y,cosx),且
a
b

(1)將y表示成x的函數(shù)f(x),并求f(x)的最小正周期;
(2)在△ABC中,角A,B,C所對的邊分別為a,b,c,若f(B)=3,
BA
BC
=
9
2
,且a+c=3+
3
,求邊長b.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知集合A={x|-2≤x≤4},B={x|x<a},且滿足A∩B=A,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}的前n項和為Sn,a1=1,an+1=2Sn+1(n∈N*),等差數(shù)列{bn}中,b2=5,且公差d=2.
(1)求數(shù)列{an},{bn}的通項公式;
(2)是否存在正整數(shù)n,使得a1b1+a2b2+…+anbn>60n?若存在,求n的最小值,若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,⊙O內(nèi)切于△ABC的邊于D,E,F(xiàn),AB=AC,連接AD交⊙O于點H,直線HF交BC的延長線于點G.
(1)求證:圓心O在直線AD上;
(2)若BC=2,求GC的長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(z)=2z+z2+(1+i),則f(i)的值是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)=log
1
2
(x-x2)的單調(diào)遞增區(qū)間是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知直線y=k(x+
1
4
)與曲線y=
x
恰有兩個不同交點,記k的所有可能取值構(gòu)成集合A;P(x,y)是橢圓
x2
16
+
y2
9
=l上一動點,點P1(x1,y1)與點P關(guān)于直線y=x+l對稱,記
y1-1
4
的所有可能取值構(gòu)成集合B,若隨機(jī)地從集合A,B中分別抽出一個元素λ1,λ2,則λ1>λ2的概率是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)是(-∞,+∞)上的偶函數(shù),若對于x≥0,都有f(x+2)=f(x),且當(dāng)x∈[0,2)時,f(x)=log2(x+1),則f(-2012)+f(2013)=
 

查看答案和解析>>

同步練習(xí)冊答案