設(shè)f(x)為周期是2的奇函數(shù),當(dāng)
時(shí),f(x)=x(x+1),則當(dāng)
時(shí),f(x)的表達(dá)式為
A.(x-5)(x-4) | B.(x-6)(x-5) | C.(x-6)(5-x) | D.(x-6)(7-x) |
試題分析:利用函數(shù)是奇函數(shù),可由x∈(0,1)時(shí)的解析式求x∈(-1,0)時(shí)的解析式,利用周期性求得x∈(5,6)時(shí),f(x)表達(dá)式.
解:因?yàn)閤∈(0,1)時(shí),f(x)=x(x+1),
設(shè)x∈(-1,0)時(shí),-x∈(0,1),
∴f(-x)=-x(-x+1),
∵f(x)為定義在R上的奇函數(shù)
∴f(x)=-f(-x)=x(-x+1),
∴當(dāng)x∈(-1,0)時(shí),f(x)=x(-x+1),
所以x∈(5,6)時(shí),x-6∈(-1,0),
∵f(x)為周期是2的函數(shù),
∴f(x)=f(x-6)=(x-6)(6-x+1)=(x-6)(7-x),
故選D
點(diǎn)評:本題綜合考查函數(shù)奇偶性與周期性知識的運(yùn)用,把要求區(qū)間上的問題轉(zhuǎn)化到已知區(qū)間上求解,是解題的關(guān)鍵,體現(xiàn)了轉(zhuǎn)化的數(shù)學(xué)思想方法.屬中檔題
練習(xí)冊系列答案
相關(guān)習(xí)題
科目:高中數(shù)學(xué)
來源:不詳
題型:單選題
若函數(shù)
為奇函數(shù),且當(dāng)
>0時(shí)
,則
的值是( )
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
(本小題滿分12分)
已知
對于任意實(shí)數(shù)
滿足
,當(dāng)
時(shí),
.
(1)求
并判斷
的奇偶性;
(2)判斷
的單調(diào)性,并用定義加以證明;
(3)已知
,集合
,
集合
,若
,求實(shí)數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:填空題
已知
是偶函數(shù),且當(dāng)
時(shí),
,則當(dāng)
時(shí),
=
.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
(本小題滿分12分)已知函數(shù)
在
上是偶函數(shù),其圖象關(guān)于直線
對稱,且在區(qū)間
上是單調(diào)函數(shù),求
和
的值.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:填空題
已知函數(shù)
是定義在
上的奇函數(shù),給出下列命題:
(1)
;
(2)若
在 [0,
上有最小值 -1,則
在
上有最大值1;
(3)若
在 [1,
上為增函數(shù),則
在
上為減函數(shù);
(4)若
時(shí),
; 則
時(shí),
。
其中正確的序號是:
。
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:填空題
在計(jì)算機(jī)的算法語言中有一種函數(shù)
叫做取整函數(shù)(也叫高斯函數(shù)).它表示x的整數(shù)部分,即表示不超過x的最大整數(shù).如
.設(shè)函數(shù)
,則函數(shù)
的值域?yàn)?u> .
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
(本題9分)函數(shù)
(Ⅰ)判斷并證明
的奇偶性;
(Ⅱ)求證:在定義域內(nèi)
恒為正。
查看答案和解析>>