在等差數(shù)列中,,其前n項和為,等比數(shù)列的各項均為正數(shù),,公比為q,且.
(1)求;
(2)設(shè)數(shù)列滿足,求的前n項和.
(1),;(2).

試題分析:本題主要考查等差數(shù)列的通項公式、等比數(shù)列的通項公式、等差數(shù)列的前n項和公式、裂項相消法求和等數(shù)學(xué)知識,考查學(xué)生的計算能力和分析問題的能力.第一問,利用等比數(shù)列的通項公式和等差數(shù)列的前n項和公式將已知表達式展開,求出,從而求出等差數(shù)列、等比數(shù)列的通項公式;第二問,利用等差數(shù)列的前n項和公式先求出,得到進行裂項,用裂項相消法求數(shù)列的前n項和.
試題解析:(1)設(shè)的公差為.
因為所以                        3分
解得 (舍),
 ,.                                  6分
(2)由(1)可知,,                        7分
所以.                        9分
            12分
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知是等差數(shù)列,前n項和是,且,
(1)求數(shù)列的通項公式;
(2)令=·2n,求數(shù)列的前n項和

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

在數(shù)列{an}和等比數(shù)列{bn}中,a1=0,a3=2,bn=2an+1(n∈N*).
(1)求數(shù)列{bn}及{an}的通項公式;
(2)若cn=an·bn,求數(shù)列{cn}的前n項和Sn.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

如圖所示,當(dāng)n≥2時,將若干點擺成三角形圖案,每條邊(包括兩個端點)有n個點,若第n個圖案中總的點數(shù)記為an,則a1+a2+a3+…+a10=(  )
A.126 B.135
C.136 D.140

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

在等差數(shù)列{an}中,a2=5,a6=21,記數(shù)列的前n項和為Sn,若S2n+1Snn∈N*恒成立,則正整數(shù)m的最小值為________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

數(shù)列是公差不為零的等差數(shù)列,并且是等比數(shù)列的相鄰三項,若,則等于(   )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

在等差數(shù)列{an}中,a1=1,a3=-3,則a1-a2-a3-a4-a5=________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知數(shù)列{an}的前三項分別為a1=5,a2=6,a3=8,且數(shù)列{an}的前n項和Sn滿足Snm(S2nS2m)-(nm)2,其中m,n為任意正整數(shù).
(1)求數(shù)列{an}的通項公式及前n項和Sn;
(2)求滿足an+33=k2的所有正整數(shù)kn.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

設(shè)數(shù)列{an}滿足a1=2,a2a4=8,且對任意n∈N*,函數(shù)f(x)=(anan+1an+2)xan+1cos xan+2sin x滿足f=0.
(1)求數(shù)列{an}的通項公式;
(2)若bn=2,求數(shù)列{bn}的前n項和Sn.

查看答案和解析>>

同步練習(xí)冊答案