【題目】已知 ,個不同的冪函數(shù),有下列命題:

函數(shù) 必過定點;

② 函數(shù)可能過點;

③ 若 ,則函數(shù)為偶函數(shù);

④ 對于任意的一組數(shù)、、…、,一定存在各不相同的個數(shù)、、…、使得上為增函數(shù).其中真命題的個數(shù)為( )

A.1個B.2個C.3個D.4個

【答案】A

【解析】

根據(jù)題目中的條件和冪函數(shù)的圖像與性質,對四個命題分別進行判斷,從而得到答案.

命題①,因為 ,個不同的冪函數(shù),

且冪函數(shù)都經過點,

所以可得函數(shù)的圖像一定過點,所以正確;

命題②,冪函數(shù),若定義域中可取負數(shù)時,則冪函數(shù)圖像一定過或者

,個不同的冪函數(shù),

若這個不同的冪函數(shù)都過,則函數(shù)的圖像過

若這個不同的冪函數(shù)有一個不過,則這個冪函數(shù)必過,則函數(shù)的圖像過,

所以的圖像不可能過,所以錯誤;

命題③,若個數(shù)中出現(xiàn)分子為奇數(shù),分母為偶數(shù)的分數(shù),則函數(shù)的定義域為,不關于原點對稱,所以函數(shù)不為偶函數(shù),所以錯誤.

命題④因為任意的一組數(shù)、、…、,一定存在各不相同的個數(shù)、…、,

則當個數(shù)中出現(xiàn)時,

,此時為常數(shù)函數(shù),不是增函數(shù),所以錯誤.

故選:A.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】下列命題錯誤的是( )

A. 命題“若,則”的逆否命題為“若 ,則

B. 為假命題,則均為假命題

C. 對于命題,使得,則,均有

D. ”是“”的充分不必要條件

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)

1)求實數(shù)的值;

2)判斷函數(shù)在區(qū)間上的單調性,并用函數(shù)單調性的定義證明;

3)求實數(shù)的取值范圍,使得關于的方程分別為:

①有且僅有一個實數(shù)解;②有兩個不同的實數(shù)解;③有三個不同的實數(shù)解.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】臨近2020年春節(jié),西寧市各賣場挖空心思尋找促銷策略.商人張三豐善于運用數(shù)學思維進行銷售分析,他根據(jù)以往當?shù)氐男枨笄闆r,得出如下他所經營的某種產品日需求量的頻率分布直方圖.

1)求圖中的值,并估計日需求量的眾數(shù):

2)某日,張三豐購進130件該種產品,根據(jù)近期市場行情,當天每售出1件能獲利30元,未售出的部分,每件虧損20元設當天的需求量為,純利潤為

i)將表示為的函數(shù);(ii)根據(jù)直方圖估計當天純利潤不少于3400元的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】對于定義在區(qū)間的函數(shù),定義:),),其中,表示函數(shù)上的最小值,表示函數(shù)上的最大值.

(1)若,,試寫出、的表達式;

(2)設,函數(shù),如果恰好為同一函數(shù),求的取值范圍.

(3)若存在最小正整數(shù),使得對任意的成立,則稱函數(shù)上的“階收縮函數(shù)”,已知函數(shù),,試判斷是否為上的“階收縮函數(shù)”,如果是,求出對應的,如果不是,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù) ,

(1)求的取值范圍,使在閉區(qū)間上存在反函數(shù);

(2)當時,函數(shù)的最小值是關于的函數(shù),求的最大值及其相應的值;

(3)對于,研究函數(shù)的圖像與函數(shù)的圖像公共點的個數(shù),并寫出公共點的橫坐標.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)(其中,,是實數(shù)常數(shù),).

(1)若,函數(shù)的圖象關于點成中心對稱,求,的值;

(2)若函數(shù)滿足條件(1),且對任意,總有,求的取值范圍;

(3)若,函數(shù)是奇函數(shù),,,且對任意時,不等式恒成立,求負實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù).

(1)證明:當時,;

(2)若有極大值,求的取值范圍;

(3)若處取極大值,證明:.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】拋物線C的頂點在坐標原點,對稱軸為x軸,拋物線C過點A(4,4),過拋物線C的焦點F作傾斜角等于45°的直線l,直線l交拋物線C于M、N兩點.

(1)求拋物線C的方程;

(2)求線段MN的長.

查看答案和解析>>

同步練習冊答案