精英家教網 > 高中數學 > 題目詳情

已知函數f(x)=2x(ex-1)-x2(x∈R).
(1)求證:函數f(x)有且只有兩個零點;
(2)已知函數y=g(x)的圖象與函數h(x)=-數學公式f(-x)-數學公式x2+x的圖象關于直線x=l對稱.證明:當x>l時,h(x)>g(x);
(3)如果一條平行x軸的直線與函數y=h(x)的圖象相交于不同的兩點A和B,試判斷線段AB的中點C是否屬于集合M={(x,y)||x|+|y|≤1},并說明理由.

(1)證明:顯然0是函數f(x)的零點,令g(x)=2(ex-1)-x,則g′(x)=2ex-1
令g′(x)=0,則x=ln,∴函數在(-∞,ln)單調遞減,在(ln,+∞)上單調遞增
∵0是函數g(x)的零點,0∈(-∞,ln),g(ln)<0
∴函數g(x)在(ln,+∞)上有一個零點
∴函數f(x)有且只有兩個零點;
(2)證明:函數y=g(x)上取點(x,y),則關于直線x=l對稱的點為(2-x,y),
∵函數h(x)=-f(-x)-x2+x=xe-x,∴y=e2-x,
令F(x)=h(x)-g(x)=xe-x-e2-x,則F′(x)=e-x-xe-x-e2-x,
∴x>1時,F′(x)>0,∴F(x)>F(1)=0,∴當x>l時,h(x)>g(x);
(3)解:不妨設A(x1,y1),B(x2,y2),C(x,y),
h′(x)=(1-x)e-x,當h′(x)>0,即x>1時,h(x)為增函數;當h′(x)<0,即x<1時,h(x)為減函數,
∴函數在x=1處取得極大值
①若(x1-1)(x2-1)=0,由h(x1)=h(x2),得x1=x2,與x1≠x2矛盾;
②若(x1-1)(x2-1)>0,由h(x1)=h(x2),得x1=x2,與x1≠x2矛盾;
根據①②可得(x1-1)(x2-1)<0,不妨設x1<1,x2>1
由(2)可知h(x2)>g(x2)=h(2-x2),∴h(x1)=h(x2)>g(x2)=h(2-x2),
∵x2>1,∴2-x2<1
∵x1<1,h(x)在(-∞,1)上為增函數
∴x1>2-x2,∴x1+x2>2,∴x>1
∴線段AB的中點C不屬于集合M.
分析:(1)顯然0是函數f(x)的零點,令g(x)=2(ex-1)-x,證明函數g(x)在(ln,+∞)上有一個零點即可;
(2)根據函數y=g(x)的圖象與函數h(x)=-f(-x)-x2+x的圖象關于直線x=l對稱,可得函數y=g(x)的解析式,構造F(x)=h(x)-g(x),確定單調性,即可得到結論;
(3)h′(x)=(1-x)e-x,確定函數的單調性,可得函數在x=1處取得極大值,進而判斷(x1-1)(x2-1)<0,不妨設x1<1,x2>1,利用h(x2)>g(x2)=h(2-x2),即可得到結論.
點評:本題考查導數知識的運用,考查函數的零點,考查不等式的證明,考查學生分析解決問題的能力,難度大.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

已知函數f(x)=2-
1
x
,(x>0),若存在實數a,b(a<b),使y=f(x)的定義域為(a,b)時,值域為(ma,mb),則實數m的取值范圍是(  )

查看答案和解析>>

科目:高中數學 來源: 題型:

已知函數f(x)=2+log0.5x(x>1),則f(x)的反函數是( 。

查看答案和解析>>

科目:高中數學 來源: 題型:

已知函數f(x)=2(m-1)x2-4mx+2m-1
(1)m為何值時,函數的圖象與x軸有兩個不同的交點;
(2)如果函數的一個零點在原點,求m的值.

查看答案和解析>>

科目:高中數學 來源: 題型:

(2013•上海)已知函數f(x)=2-|x|,無窮數列{an}滿足an+1=f(an),n∈N*
(1)若a1=0,求a2,a3,a4
(2)若a1>0,且a1,a2,a3成等比數列,求a1的值
(3)是否存在a1,使得a1,a2,…,an,…成等差數列?若存在,求出所有這樣的a1,若不存在,說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

選修4-5:不等式選講
已知函數f(x)=2|x-2|-x+5,若函數f(x)的最小值為m
(Ⅰ)求實數m的值;
(Ⅱ)若不等式|x-a|+|x+2|≥m恒成立,求實數a的取值范圍.

查看答案和解析>>

同步練習冊答案