【題目】如圖,四棱錐中, 為等邊三角形,且平面平面, , , .

(Ⅰ)證明: ;

(Ⅱ)若棱錐的體積為,求該四棱錐的側(cè)面積.

【答案】(Ⅰ)證明見解析;(Ⅱ) .

【解析】試題分析】(I)的中點為,連接,.利用等腰三角形的性質(zhì)和矩形的性質(zhì)可證得,由此證得平面,故,故.(II) 可知是棱錐的高,利用體積公式求得,利用勾股定理和等腰三角形的性質(zhì)求得的值,進(jìn)而求得面積.

試題解析】

證明:(Ⅰ)取的中點為,連接,

為等邊三角形,∴.

底面中,可得四邊形為矩形,∴,

,∴平面,

平面,∴.

,所以.

(Ⅱ)由面

平面,所以為棱錐的高,

,知,

,

.

由(Ⅰ)知,,∴.

.

,可知平面,∴,

因此.

,,

的中點,連結(jié),則,,

.

所以棱錐的側(cè)面積為.

型】解答
結(jié)束】
20

【題目】已知圓經(jīng)過橢圓 的兩個焦點和兩個頂點,點, , 是橢圓上的兩點,它們在軸兩側(cè),且的平分線在軸上, .

(Ⅰ)求橢圓的方程;

(Ⅱ)證明:直線過定點.

【答案】(Ⅰ).(Ⅱ)直線過定點.

【解析】試題分析】(I)根據(jù)圓的半徑和已知 ,,由此求得橢圓方程.(II)設(shè)出直線的方程,聯(lián)立直線方程與橢圓方程,寫出韋達(dá)定理,寫出的斜率并相加,由此求得直線過定點.

試題解析】

(Ⅰ)圓軸交點即為橢圓的焦點,圓軸交點即為橢圓的上下兩頂點,所以, .從而,

因此橢圓的方程為: .

(Ⅱ)設(shè)直線的方程為.

,消去.

設(shè) ,則, .

直線的斜率

直線的斜率 .

.

的平分線在軸上,得.又因為,所以,

所以.

因此,直線過定點.

[點睛]本小題主要考查橢圓方程的求解,考查圓與橢圓的位置關(guān)系,考查直線與圓錐曲線位置關(guān)系. 涉及直線與橢圓的基本題型有:(1)位置關(guān)系的判斷.(2)弦長、弦中點問題.(3)軌跡問題.(4)定值、最值及參數(shù)范圍問題.(5)存在性問題.常用思想方法和技巧有:(1)設(shè)而不求.(2)坐標(biāo)法.(3)根與系數(shù)關(guān)系.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】一同學(xué)在電腦中打出若干個圈:○●○○●○○○●○○○○●○○○○○●若將此若干個圈依此規(guī)律繼續(xù)下去,得到一系列的圈,那么在前2012個圈中的●的個數(shù)是 ( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】2018年6月14日,第二十一屆世界杯足球賽將在俄羅斯拉開帷幕.為了了解喜愛足球運動是否與性別有關(guān),某體育臺隨機抽取100名觀眾進(jìn)行統(tǒng)計,得到如下列聯(lián)表.

(1)將列聯(lián)表補充完整,并判斷能否在犯錯誤的概率不超過0.001的前提下認(rèn)為喜愛足球運動與性別有關(guān)?

(2)在不喜愛足球運動的觀眾中,按性別分別用分層抽樣的方式抽取6人,再從這6人中隨機抽取2人參加一臺訪談節(jié)目,求這2人至少有一位男性的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,四邊形ABCD內(nèi)接于⊙O,過點A作⊙O的切錢EP交CB 的延長線于P,己知∠PAB=25°.

(1)若BC是⊙O的直徑,求∠D的大;
(2)若∠DAE=25°,求證:DA2=DCBP.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】把三盆不同的蘭花和4盆不同的玫瑰花擺放在右圖圖案中的1,2,3,4,5,6,7所示的位置上,其中三盆蘭花不能放在一條直線上,則不同的擺放方法為(

A.2680種
B.4320種
C.4920種
D.5140種

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】有甲乙兩個班級進(jìn)行數(shù)學(xué)考試,按照大于等于85分為優(yōu)秀,85分以下為非優(yōu)秀統(tǒng)計成績后,得到如下的列聯(lián)表.

優(yōu)秀

非優(yōu)秀

總計

甲班

10

乙班

30

總計

105

已知在全部105人中隨機抽取1人為優(yōu)秀的概率為.

(1)請完成上面的列聯(lián)表;(把列聯(lián)表自己畫到答題卡上)

(2)根據(jù)列聯(lián)表的數(shù)據(jù),若按95%的可靠性要求,能否認(rèn)為成績與班級有關(guān)系”?

參考公式:

P(K2k0)

0.10

0.05

0.025

0.010

k0

2.706

3.841

5.024

6.635

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】用紅、黃、藍(lán)、白、黑五種顏色涂在如圖所示的四個區(qū)域內(nèi),每個區(qū)域涂一種顏色,相鄰兩個區(qū)域涂不同的顏色,五種顏色可以反復(fù)使用,共有___________種不同的涂色方法?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知f(x)=x2﹣a|x﹣1|+b(a>0,b>﹣1)
(1)若b=0,a>2,求f(x)在區(qū)間[0,2]內(nèi)的最小值m(a);
(2)若f(x)在區(qū)間[0,2]內(nèi)不同的零點恰有兩個,且落在區(qū)間[0,1),(1,2]內(nèi)各一個,求a﹣b的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】的展開式中,第二、三、四項的二項式系數(shù)成等差數(shù)列

1的值;

2此展開式中是否有常數(shù)項,為什么?

查看答案和解析>>

同步練習(xí)冊答案