若存在實常數(shù),使得函數(shù)對其定義域上的任意實數(shù)分別滿足:,則稱直線的“隔離直線”.已知,為自然對數(shù)的底數(shù)).

(1)求的極值;

(2)函數(shù)是否存在隔離直線?若存在,求出此隔離直線方程;若不存在,請說明理由.

 

【答案】

(1)當(dāng)時,取得極小值0(2)存在隔離直線

【解析】

試題分析:(1) ,

.        

當(dāng)時,.         

當(dāng)時,,此時函數(shù)遞減; 

當(dāng)時,,此時函數(shù)遞增;

∴當(dāng)時,取極小值,其極小值為.  

(2) :由(1)可知函數(shù)的圖象在處有公共點,因此若存在的隔離直線,則該直線過這個公共點.          

設(shè)隔離直線的斜率為,則直線方程為,即.                                

,可得當(dāng)時恒成立.

,                             

,得.                   

下面證明當(dāng)時恒成立.

,則

,                

當(dāng)時,

當(dāng)時,,此時函數(shù)遞增;

當(dāng)時,,此時函數(shù)遞減;

∴當(dāng)時,取極大值,其極大值為.   

從而,即恒成立.

∴函數(shù)存在唯一的隔離直線

考點:函數(shù)極值最值及不等式恒成立問題

點評:第二問中首先找到兩曲線的交點是求解本題的關(guān)鍵,給定信息中滿足的不等式恒成立將其轉(zhuǎn)化為求函數(shù)最值滿足大于等于零或小于等于零,這樣即可利用函數(shù)導(dǎo)數(shù)這一工具來求解

 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(09年長沙一中第八次月考理)(13分)若存在實常數(shù),使得函數(shù)對其定義域上的任意實數(shù)分別滿足:,則稱直線的“隔離直線”.已知(其中為自然對數(shù)的底數(shù)).

(Ⅰ)求的極值;

        (Ⅱ) 函數(shù)是否存在隔離直線?若存在,求出此隔離直線方程;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若存在實常數(shù),使得函數(shù)對其定義域上的任意實數(shù)分別滿足:,則稱直線的“隔離直線”.已知,(其中為自然對數(shù)的底數(shù)),根據(jù)你的數(shù)學(xué)知識,推斷間的隔離直線方程為                  .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若存在實常數(shù),使得函數(shù)對其定義域上的任意實數(shù)分別滿足:,則稱直線的“隔離直線”.已知,(其中為自然對數(shù)的底數(shù)).

(1)求的極值;

(2) 函數(shù)是否存在隔離直線?若存在,求出此隔離直線方程;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014屆福建漳州高二下學(xué)期期中考試理數(shù)學(xué)卷(解析版) 題型:解答題

若存在實常數(shù),使得函數(shù)對其定義域上的任意實數(shù)分別滿足:,則稱直線的“隔離直線”.已知,為自然對數(shù)的底數(shù)).

(Ⅰ)求的極值;

(Ⅱ)函數(shù)是否存在隔離直線?若存在,求出此隔離直線方程;若不存在,請說明理由.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年山東省高三一輪復(fù)習(xí)質(zhì)量檢測理科數(shù)學(xué) 題型:解答題

(14分)若存在實常數(shù),使得函數(shù)對其定義域上的任意實數(shù)分別滿足:,則稱直線的“隔離直線”.已知,(其中為自然對數(shù)的底數(shù)).

(1)求的極值;

(2) 函數(shù)是否存在隔離直線?若存在,求出此隔離直線方程;若不存在,請說明理由.

 

查看答案和解析>>

同步練習(xí)冊答案