等差數(shù)列{}的首項>0,前n項的和為,若(m,K∈,且m≠k),則取最大值時,

[  ]

A.n=

B.n=

C.當m+k為偶數(shù),n=;當m+k為奇數(shù),n=

D.當m+k為偶數(shù),n=;當m+k為奇數(shù),n=

答案:D
解析:

解:


練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

20、已知等差數(shù)列{an}的首項為a,公差為b,等比數(shù)列{bn}的首項為b,公比為a,其中a,b都是大于1
的正整數(shù),且a1<b1,b2<a3
(1)求a的值;
(2)若對于任意的n∈N+,總存在m∈N+,使得am+3=bn成立,求b的值;
(3)令Cn=an+1+bn,問數(shù)列{Cn}中是否存在連續(xù)三項成等比數(shù)列?若存在,求出所有成等比數(shù)列的連續(xù)三項;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知等差數(shù)列{an}的首項a1及公差d都是整數(shù),前n項和為Sn,若a1>1,a4>3,S3≤9,設(shè)bn=
1
nan
,則使b1+b2+…+bn
99
100
成立的最大n值為( 。
A、97B、98C、99D、100

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知三個正整數(shù)2a,1,a2+3按某種順序排列成等差數(shù)列.
(1)求a的值;
(2)若等差數(shù)列{an}的首項、公差都為a,等比數(shù)列{bn}的首項、公比也都為a,前n項和分別為Sn,Tn,且
Tn+22n
>Sn-130,求滿足條件的正整數(shù)n的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

等差數(shù)列{an}的首項為a1,公差d=-1,前n項和為Sn
(Ⅰ)若S5=-5,求a1的值;
(Ⅱ)若Sn≤an對任意正整數(shù)n均成立,求a1的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知等差數(shù)列{an}的首項a1=1,公差d>0,且第二項、第五項、第十四項分別是一個等比數(shù)列{cn}的第二項、第三項、第四項.
(1)求數(shù)列{an}的通項公式;
(2)設(shè)bn=
1n(an+3)
,Sn=b1+b2+…+bn,求Sn;
(3)對于(2)中的Sn是否存在實數(shù)t,使得對任意的n∈N*均有:8Sn≤t(an+17)成立?若存在,求出t的范圍,若不存在,請說明理由.

查看答案和解析>>

同步練習冊答案