(2008•奉賢區(qū)一模)我們規(guī)定:對(duì)于任意實(shí)數(shù)A,若存在數(shù)列{an}和實(shí)數(shù)x(x≠0),使得A=a1+a2x+a3x2+…+anxn-1,則稱數(shù)A可以表示成x進(jìn)制形式,簡(jiǎn)記為:A=
.
x\~(a1)(a2)(a3)…(an-1)(an)
.如:A=
.
2\~(-1)(3)(-2)(1)
,則表示A是一個(gè)2進(jìn)制形式的數(shù),且A=-1+3×2+(-2)×22+1×23=5.
(1)已知m=(1-2x)(1+3x2)(其中x≠0)),試將m表示成x進(jìn)制的簡(jiǎn)記形式.
(2)若數(shù)列{an}滿足a1=2,ak+1=
1
1-ak
,k∈N*
bn=
.
2\~(a1)(a2)(a3)…(a3n-2)(a3n-1)(a3n)
(n∈N*).求證:bn=
2
7
8n-
2
7

(3)若常數(shù)t滿足t≠0且t>-1,dn=
.
t\~(
C
1
n
)(
C
2
n
)(
C
3
n
)…(
C
n-1
n
)(
C
n
n
)
,求
lim
n→∞
dn
dn+1
分析:(1)由m=(1-2x)(1+3x2)=1-2x+3x2-6x3,能將將m表示成x進(jìn)制的簡(jiǎn)記形式.
(2)a2=-1,a3=
1
2
,a4=2,a5=-1,a6=
1
2
,由an+1=
1
1-an
,知an+2=
1
1-an+1
=
1
1-
1
1-an
=
1-an
-an
,所以an+3=
1
1-an+2
=
1
1+
1-an
an
=an(n∈N*),由此能夠證明bn=
2
7
8n-
2
7

(3)dn=
C
1
n
+
C
2
n
t+
C
3
n
t2+
C
4
n
t3…+
C
n
n
tn-1=
C
1
n
t+
C
2
n
t2+
C
3
n
t3+…+
C
n
n
tn
t
=
[
C
0
n
+
C
1
n
t+
C
2
n
t2+
C
3
n
t3+…+
C
n
n
tn]-1
t
=
(1+t)n-1
t
,由此能夠求出
lim
n→∞
dn
dn+1
=
1
1+t
,t>0
1,-1<t<0
解答:解:(1)m=(1-2x)(1+3x2)=1-2x+3x2-6x3(2分)
m=
.
x\~(1)(-2)(3)(-6)
(4分)
(2)a2=-1,a3=
1
2
a4=2,a5=-1,a6=
1
2
,
an+1=
1
1-an
an+2=
1
1-an+1
=
1
1-
1
1-an
=
1-an
-an

an+3=
1
1-an+2
=
1
1+
1-an
an
=an(n∈N*),知{an}是周期為3的數(shù)列     (6分)
bn=
.
2\~(a1)(a2)(a3)…(a3n-2)(a3n-1)(a3n)

=[2+(-1)×2+
1
2
×22]+[2×23+(-1)×24+
1
2
×25]
+…+[2×23n-3+(-1)×23n-2+
1
2
×23n-1]
=[2+(-1)×2+
1
2
×22]×(1+23+26+…+23n-3)
=
1-8n
1-8
=
2
7
×8n-
2
7
(10分)
(3)dn=
C
1
n
+
C
2
n
t+
C
3
n
t2+
C
4
n
t3…+
C
n
n
tn-1=
C
1
n
t+
C
2
n
t2+
C
3
n
t3+…+
C
n
n
tn
t
=
[
C
0
n
+
C
1
n
t+
C
2
n
t2+
C
3
n
t3+…+
C
n
n
tn]-1
t
=
(1+t)n-1
t
(14分)
所以
lim
n→∞
dn
dn+1
=
lim
n→∞
(1+t)n-1
(1+t)n+1-1
=
1
1+t
|1+t>1
1|1+t<1
,即
lim
n→∞
dn
dn+1
=
1
1+t
,t>0
1,-1<t<0
(18分)
點(diǎn)評(píng):本題考查數(shù)列的遞推公式,解題時(shí)要認(rèn)真審題,仔細(xì)解答,注意挖掘題設(shè)的隱含條件,合理地進(jìn)行等價(jià)轉(zhuǎn)化.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(2008•奉賢區(qū)一模)我們將具有下列性質(zhì)的所有函數(shù)組成集合M:函數(shù)y=f(x)(x∈D),對(duì)任意x,y,
x+y
2
∈D
均滿足f(
x+y
2
)≥
1
2
[f(x)+f(y)]
,當(dāng)且僅當(dāng)x=y時(shí)等號(hào)成立.
(1)若定義在(0,+∞)上的函數(shù)f(x)∈M,試比較f(3)+f(5)與2f(4)大。
(2)設(shè)函數(shù)g(x)=-x2,求證:g(x)∈M.
(3)已知函數(shù)f(x)=log2x∈M.試?yán)么私Y(jié)論解決下列問題:若實(shí)數(shù)m、n滿足2m+2n=1,求m+n的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2008•奉賢區(qū)一模)(x+2)4的二項(xiàng)展開式中的第三項(xiàng)是
24x2
24x2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2008•奉賢區(qū)一模)已知復(fù)數(shù)w滿足2w-4=(3+w)i(i為虛數(shù)單位),則w=
1+2i
1+2i

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2008•奉賢區(qū)一模)已知圓錐的母線與底面所成角為60°,母線長(zhǎng)為4,則圓錐的側(cè)面積為

查看答案和解析>>

同步練習(xí)冊(cè)答案