已知函數(shù)f(x)=數(shù)學(xué)公式,則不等式f(2-x2)<f(x)的解集是________.

{x|x>1或x<-2}
分析:由h(x)=x2+4x在[0,+∞)單調(diào)遞增,h(x)min=h(0)=0,g(x)=-x2+4x在(-∞,0)上單調(diào)遞增,g(x)max=g(0)=0可知函數(shù)f(x)在R上單調(diào)遞增,則由f(2-x2)<f(x)可得2-x2<x,解不等式可求
解答:∵f(x)=
∵h(yuǎn)(x)=x2+4x在[0,+∞)單調(diào)遞增,h(x)min=h(0)=0
g(x)=-x2+4x在(-∞,0)上單調(diào)遞增,g(x)max=g(0)=0
由分段函數(shù)的性質(zhì)可知,函數(shù)f(x)在R上單調(diào)遞增
∵f(2-x2)<f(x)
∴2-x2<x即(x+2)(x-1)>0
∴x>1或x<-2
故答案為{x|x>1或x<-2}
點評:本題主要考查了分段函數(shù)的單調(diào)性的應(yīng)用,解答本題的關(guān)鍵是由每段函數(shù)的單調(diào)性及最值判斷整段函數(shù)的單調(diào)性
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=sinxcosφ+cosxsinφ(其中x∈R,0<φ<π).
(1)求函數(shù)f(x)的最小正周期;
(2)若函數(shù)y=f(2x+
π
4
)
的圖象關(guān)于直線x=
π
6
對稱,求φ的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)為定義在R上的奇函數(shù),且當(dāng)x>0時,f(x)=(sinx+cosx)2+2cos2x,
(1)求x<0,時f(x)的表達式;
(2)若關(guān)于x的方程f(x)-a=o有解,求實數(shù)a的范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=aInx-ax,(a∈R)
(1)求f(x)的單調(diào)遞增區(qū)間;(文科可參考公式:(Inx)=
1
x

(2)若f′(2)=1,記函數(shù)g(x)=x3+x2[f(x)+
m
2
]
,若g(x)在區(qū)間(1,3)上總不單調(diào),求實數(shù)m的范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=x2-bx的圖象在點A(1,f(1))處的切線l與直線3x-y+2=0平行,若數(shù)列{
1
f(n)
}
的前n項和為Sn,則S2010的值為( 。
A、
2011
2012
B、
2010
2011
C、
2009
2010
D、
2008
2009

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)是定義在區(qū)間(-1,1)上的奇函數(shù),且對于x∈(-1,1)恒有f’(x)<0成立,若f(-2a2+2)+f(a2+2a+1)<0,則實數(shù)a的取值范圍是
 

查看答案和解析>>

同步練習(xí)冊答案