一個幾何體的體積為20cm3,三視圖如圖所示,則h=( 。ヽm.
A、2B、4C、6D、不確定
考點:由三視圖求面積、體積
專題:空間位置關(guān)系與距離
分析:該幾何體是一個三棱錐,底面是直角三角形,求出底面積和高,根據(jù)公式求解即可.
解答: 解:由已知中的三視圖可得:
該幾何體是一個三棱錐,底面是兩直角邊長為5和6直角三角形,高為h,
故幾何體的體積V=
1
3
×(
1
2
×5×6)×h=20,
解得h=4cm,
故選:B
點評:本題考查學生的空間想象能力,分析出幾何體是形狀是解答的關(guān)鍵,難度不大,是基礎(chǔ)題.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

如圖,半圓的半徑OA=3,O為圓心,C為半圓上不同于A、B的任意一點,若P為半徑OC上的動點,則(
PA
+
PB
)•
PC
的最小值為(  )
A、-3
B、-
27
10
C、-
9
2
D、-6

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

函數(shù)f(x)=
1
3
x3-x2+a,函數(shù)g(x)=x2-3x,它們的定義域均為[1,+∞),并且函數(shù)f(x)的圖象始終在函數(shù)g(x)的上方,那么a的取值范圍是( 。
A、(0,+∞)
B、(-∞,0)
C、(-
4
3
,+∞)
D、(-∞,
4
3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知集合A={x|22x-1
1
4
},B={y|log 
1
16
y≥
1
2
},則∁RA∩B=(  )
A、∅
B、(0,
1
4
C、(0,
1
4
]
D、(-
1
2
,
1
4
]

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

△ABC中,AB=10,AC=6,BC邊上中線長為7,則S△ABC的值為( 。
A、30
3
B、15
3
C、
15
2
3
D、15

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

函數(shù)f(x)=3x-x3在區(qū)間(a2-10,a)上有最小值,實數(shù)a的取值范圍是( 。
A、(-1,3)
B、(-1,2)
C、(-1,3]
D、(-1,2]

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

冪函數(shù)y=xα中當α取不同的正數(shù)時,在[0,1]上它們的圖象是一組美麗的曲線,設(shè)點A(1,0),B(0,1),若線段AB恰被兩個冪函數(shù)y=xα,y=xβ的圖象三等份,即BM=MN=NA,則αβ=( 。
A、1B、2C、3D、無法確定

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,三棱錐S-ABC,SA=SB=SC,SG為△SAB上的高,D、E、F為AC、BC、SC的中點.
(1)證明:面SAB∥面FDE;
(2)判斷SG與面DEF的位置關(guān)系,并給出證明.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=log2
x-1
x+2
,x∈[2,4],
(1)判斷函數(shù)f(x)的單調(diào)性,并證明;
(2)求函數(shù)f(x)的最大值和最小值.

查看答案和解析>>

同步練習冊答案