18.若函數(shù)$f(x)=\frac{x}{1+|x|}-m$有零點(diǎn),則實(shí)數(shù)m的取值范圍是  (-1,1).

分析 求出表達(dá)式$\frac{x}{1+|x|}$的值域范圍,然后推出m的范圍.

解答 解:函數(shù)$f(x)=\frac{x}{1+|x|}-m$有零點(diǎn),可知y=$\frac{x}{1+|x|}$與y=m有交點(diǎn),
y=$\frac{x}{1+|x|}$是奇函數(shù),x≥0時(shí),0≤$\frac{x}{1+x}$<1,
所以m∈(-1,1).
給答案為:(-1,1).

點(diǎn)評(píng) 本題考查函數(shù)的最值的求法,函數(shù)的零點(diǎn)與方程根的關(guān)系,考查轉(zhuǎn)化思想以及計(jì)算能力.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.設(shè)函數(shù)f(x)=4x2+ax+2,不等式f(x)<c的解集為(-1,2).
(1)求a的值;
(2)解不等式$\frac{4x+m}{{f(x)-4{x^2}}}>0$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.某工廠在2016年的“減員增效”中對(duì)部分人員實(shí)行分流,規(guī)定分流人員一年可以到原單位領(lǐng)取工資的100%,從第二年初,以后每年只能在原單位按上一年的$\frac{2}{3}$領(lǐng)取工資,該廠根據(jù)分流人員的技術(shù)特長,計(jì)劃創(chuàng)辦新的經(jīng)濟(jì)實(shí)體,該經(jīng)濟(jì)實(shí)體預(yù)計(jì)第一年屬投資階段,第二年每人可獲得b元收入,從第三年起每人每年的收入可在上一年的基礎(chǔ)上遞增50%,如果某人分流后工資的收入每年a元,分流后進(jìn)入新經(jīng)濟(jì)實(shí)體,第n年的收入為an元;
(1)求{an}的通項(xiàng)公式;
(2)當(dāng)$b≥\frac{3a}{8}$時(shí),是否一定可以保證這個(gè)人分流一年后的收入永遠(yuǎn)超過分流前的年收入?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.已知向量$\overrightarrow{a}$=(2,3),$\overrightarrow$=(6,x),且$\overrightarrow{a}$⊥$\overrightarrow$,則x的值為-4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.已知函數(shù)f(x)=$\frac{1}{2}$(sinx+cosx)-$\frac{1}{2}$|sinx-cosx|,則f(x)的值域是( 。
A.[-1,$\frac{\sqrt{2}}{2}$]B.[-1,1]C.[-$\frac{\sqrt{2}}{2}$,1]D.[-1,-$\frac{\sqrt{2}}{2}$]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.對(duì)任意的非零實(shí)數(shù)a,b,若$a?b=\left\{\begin{array}{l}\frac{b-1}{a},a<b\\ \frac{a+1},a≥b\end{array}\right.$則lg10000$?{(\frac{1}{2})^{-2}}$=( 。
A.$\frac{1}{4}$B.$\frac{5}{4}$C.$\frac{2}{5}$D.$\frac{4}{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.從2007名學(xué)生中選取50名參加全國數(shù)學(xué)聯(lián)賽,若采用下面的方法選取:先用簡單隨機(jī)抽樣從2007人中剔除7人,剩下的2000人再按系統(tǒng)抽樣的方法抽取,則每人入選的可能性(  )
A.都相等,且為$\frac{50}{2007}$B.不全相等
C.均不相等D.都相等,且為$\frac{1}{40}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.復(fù)數(shù)z=$\frac{6+8i}{(4+3i)(1+i)}$,則|z|=$\sqrt{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.(log23)×(log32)=1.

查看答案和解析>>

同步練習(xí)冊答案