8.設(shè)函數(shù)f(x)在[0,+∞)上有連續(xù)導(dǎo)數(shù),且f′(x)≥k>0,f(0)<0.證明f(x)在(0,+∞)內(nèi)有且僅有一個(gè)零點(diǎn).

分析 由f′(x)≥k>0,可得f(x)在(0,+∞)遞增,可令g(x)=f(x)-kx,求出導(dǎo)數(shù),判斷單調(diào)性,再由函數(shù)零點(diǎn)存在定理,即可得證.

解答 證明:由f′(x)≥k>0,可得
f(x)在(0,+∞)遞增,
可令g(x)=f(x)-kx,
由g′(x)=f′(x)-k≥0,
即有g(shù)(x)在(0,+∞)遞增,
g(x)>g(0)=f(0),
則有f(x)-kx>f(0),
即f(x)>kx+f(0),
由f(0)<0,kx>0,當(dāng)x→+∞,kx→+∞,
使得kx+f(0)>0,由f(x)在(0,+∞)遞增,
根據(jù)函數(shù)零點(diǎn)存在定理,
可得f(x)在(0,+∞)內(nèi)有且僅有一個(gè)零點(diǎn).

點(diǎn)評(píng) 本題考查導(dǎo)數(shù)的運(yùn)用:求單調(diào)性,考查函數(shù)零點(diǎn)存在定理的運(yùn)用,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

18.已知集合M={x|1<x<5,x∈N},S={1,2,3},那么M∪S=( 。
A.{1,2,3,4}B.{1,2,3,4,5}C.{2,3}D.{2,3,4}

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

19.如圖,在平面直角坐標(biāo)系中,正方形OABC邊長(zhǎng)為4,M(4,m)、N(n,4)分別是AB、BC上的兩個(gè)動(dòng)點(diǎn),且ON⊥MN,當(dāng)OM最小時(shí),m+n=5.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

16.用|A|表示非空集合A中集合元素個(gè)數(shù)(例如A={1,3,5},則|A|=3),定義M(a,b)=$\left\{{\begin{array}{l}{a,a≥b}\\{b,a<b}\end{array}}\right.({a,b∈R})$,若A={B|B⊆{1,2,3}且B中至少有一個(gè)奇數(shù)},C={x|x2-4|x|+3=0},那么M(|A|,|C|)可能取值的有( 。﹤(gè).
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

3.已知$\frac{1}{3}≤a≤1$,若函數(shù)f(x)=ax2-2x+1的定義域[1,3].
(1)求f(x)在定義域上的最小值(用a表示);
(2)記f(x)在定義域上的最大值為M(a),最小值N(a),求M(a)-N(a)的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

13.下列函數(shù)中,滿足“f(x+y)=f(x)f(y)”的單調(diào)遞增函數(shù)是(  )
A.f(x)=x${\;}^{\frac{1}{2}}$B.f(x)=3xC.f(x)=($\frac{1}{2}$)xD.f(x)=log2x

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

20.若a>b>c>0,則$\sqrt{ab}$,$\sqrt{bc}$,$\sqrt{ac}$,c從小到大的順序是c<$\sqrt{bc}$<$\sqrt{ac}$<$\sqrt{ab}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

17.已知四邊形ABCD內(nèi)接于⊙O,AD:BC=1:2,BA、CD的延長(zhǎng)線交于點(diǎn)E,且EF切⊙O于F.
(Ⅰ)求證:EB=2ED;
(Ⅱ)若AB=2,CD=5,求EF的長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

18.如圖,已知AB是半圓O的直徑,M,N,P是將半圓圓周四等分的三個(gè)分點(diǎn),從A,B,M,N,P這5個(gè)點(diǎn)中任取3個(gè)點(diǎn),則這3個(gè)點(diǎn)組成直角三角形的概率為(  )
A.$\frac{2}{5}$B.$\frac{7}{20}$C.$\frac{3}{10}$D.$\frac{1}{4}$

查看答案和解析>>

同步練習(xí)冊(cè)答案