設a,b∈R,給出下列條件:①a+b>1;②a+b=2;③a+b>2;④a2+b2>2;⑤a3+b3>2;⑥ab>1,其中能推出“a,b中至少有一個大于1”的條件有( 。﹤.
A.1個B.2個C.3個D.4個
∵a=b=
2
3
時,a+b>1,∴①×;
∵a=b=1時,a+b=2,∴②×;
對③,假設a、b都不大于1,a≤1,b≤1?a+b≤2與a+b>2矛盾,∴③√;
∵a=b=-2時,a2+b2>2,∴④×;
對⑤,假設a、b都不大于1,a≤1,b≤1?a3≤1,b3≤1?a3+b3≤2與a3+b3>2矛盾,∴⑤√;
∵a=-2,b=-1時,ab=2>1,∴⑥×;
故選B
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:閱讀理解

閱讀:設Z點的坐標(a,b),r=|
OZ
|,θ是以x軸的非負半軸為始邊、以OZ所在的射線為終邊的角,復數(shù)z=a+bi還可以表示為z=r(cosθ+isinθ),這個表達式叫做復數(shù)z的三角形式,其中,r叫做復數(shù)z的模,當r≠0時,θ叫做復數(shù)z的幅角,復數(shù)0的幅角是任意的,當0≤θ<2π時,θ叫做復數(shù)z的幅角主值,記作argz.
根據(jù)上面所給出的概念,請解決以下問題:
(1)設z=a+bi=r(cosθ+isinθ) (a、b∈R,r≥0),請寫出復數(shù)的三角形式與代數(shù)形式相互之間的轉換關系式;
(2)設z1=r1(cosθ1+isinθ1),z2=r2(cosθ2+isinθ2),探索三角形式下的復數(shù)乘法、除法的運算法則,請寫出三角形式下的復數(shù)乘法、除法的運算法則.(結論不需要證明)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設函數(shù)f(x)的定義域為D,若存在x0∈D,使f(x0)=x0成立,則稱以(x0,x0)為坐標的點為函數(shù)f(x)圖象上的不動點.
(1)若函數(shù)f(x)=
3x+ax+b
圖象上有兩個關于原點對稱的不動點,求a,b應滿足的條件;
(2)在(1)的條件下,若a=8,記函數(shù)f(x)圖象上的兩個不動點分別為A、B,點M為函數(shù)圖象上的另一點,且其縱坐標yM>3,求點M到直線AB距離的最小值及取得最小值時M點的坐標;
(3)下述命題“若定義在R上的奇函數(shù)f(x)圖象上存在有限個不動點,則不動點的有奇數(shù)個”是否正確?若正確,給出證明,并舉一例;若不正確,請舉一反例說明.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

定義:設函數(shù)y=f(x)在(a,b)內(nèi)可導,f'(x)為f(x)的導數(shù),f''(x)為f'(x)的導數(shù)即f(x)的二階導數(shù),若函數(shù)y=f(x) 在(a,b)內(nèi)的二階導數(shù)恒大于等于0,則稱函數(shù)y=f(x)是(a,b)內(nèi)的下凸函數(shù)(有時亦稱為凹函數(shù)).已知函數(shù)f(x)=xlnx
(1)證明函數(shù)f(x)=xlnx是定義域內(nèi)的下凸函數(shù),并在所給直角坐標系中畫出函數(shù)f(x)=xlnx的圖象;
(2)對?x1,x2∈R+,根據(jù)所畫下凸函數(shù)f(x)=xlnx圖象特征指出x1lnx1+x2lnx2≥(x1+x2)[ln(x1+x2)-ln2]與x1lnx1+x2lnx2≥(x1+x2)[ln(x1+x2)-ln2]的大小關系;
(3)當n為正整數(shù)時,定義函數(shù)N (n)表示n的最大奇因數(shù).如N (3)=3,N (10)=5,….記S(n)=N(1)+N(2)+…+N(2n),若
2n
i=1
xi=1
,證明:
2n
i=1
xilnxi≥-ln2n
ln
1
3S(n)-2
(i,n∈N*).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設直線. 若直線l與曲線S同時滿足下列兩個條件:

①直線l與曲線S相切且至少有兩個切點;

②對任意xR都有. 則稱直線l為曲線S的“上夾線”.

(1) 類比“上夾線”的定義,給出“下夾線”的定義;

(2) 已知函數(shù)取得極小值,求ab的值;

(3) 證明:直線是(2)中曲線的“上夾線”。

查看答案和解析>>

科目:高中數(shù)學 來源:2011年上海市金山區(qū)高考數(shù)學一模試卷(文理合卷)(解析版) 題型:解答題

閱讀:設Z點的坐標(a,b),r=||,θ是以x軸的非負半軸為始邊、以OZ所在的射線為終邊的角,復數(shù)z=a+bi還可以表示為z=r(cosθ+isinθ),這個表達式叫做復數(shù)z的三角形式,其中,r叫做復數(shù)z的模,當r≠0時,θ叫做復數(shù)z的幅角,復數(shù)0的幅角是任意的,當0≤θ<2π時,θ叫做復數(shù)z的幅角主值,記作argz.
根據(jù)上面所給出的概念,請解決以下問題:
(1)設z=a+bi=r(cosθ+isinθ) (a、b∈R,r≥0),請寫出復數(shù)的三角形式與代數(shù)形式相互之間的轉換關系式;
(2)設z1=r1(cosθ1+isinθ1),z2=r2(cosθ2+isinθ2),探索三角形式下的復數(shù)乘法、除法的運算法則,請寫出三角形式下的復數(shù)乘法、除法的運算法則.(結論不需要證明)

查看答案和解析>>

同步練習冊答案