已知橢圓的左右頂點(diǎn)分別為,離心率
(1)求橢圓的方程;
(2)若點(diǎn)為曲線:上任一點(diǎn)(點(diǎn)不同于),直線與直線交于點(diǎn),為線段的中點(diǎn),試判斷直線與曲線的位置關(guān)系,并證明你的結(jié)論.

(1)
(2)直線與圓相切.

解析

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

設(shè)分別是橢圓的左右焦點(diǎn),上一點(diǎn)且軸垂直,直線的另一個(gè)交點(diǎn)為
(1)若直線的斜率為,求的離心率;
(2)若直線軸上的截距為,且,求

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(本小題滿分12分,(1)小問(wèn)4分,(2)小問(wèn)8分)已知為橢圓上兩動(dòng)點(diǎn),分別為其左右焦點(diǎn),直線過(guò)點(diǎn),且不垂直于軸,的周長(zhǎng)為,且橢圓的短軸長(zhǎng)為
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)已知點(diǎn)為橢圓的左端點(diǎn),連接并延長(zhǎng)交直線于點(diǎn).求證:直線過(guò)定點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

過(guò)拋物線C:上的點(diǎn)M分別向C的準(zhǔn)線和x軸作垂線,兩條垂線及C的準(zhǔn)線和x軸圍成邊長(zhǎng)為4的正方形,點(diǎn)M在第一象限.
(1)求拋物線C的方程及點(diǎn)M的坐標(biāo);
(2)過(guò)點(diǎn)M作傾斜角互補(bǔ)的兩條直線分別與拋物線C交于A,B兩點(diǎn),如果點(diǎn)M在直線AB的上方,求面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

橢圓:的左頂點(diǎn)為,直線交橢圓兩點(diǎn)(下),動(dòng)點(diǎn)和定點(diǎn)都在橢圓上.
(1)求橢圓方程及四邊形的面積.
(2)若四邊形為梯形,求點(diǎn)的坐標(biāo).
(3)若為實(shí)數(shù),,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知拋物線的方程為,直線的方程為,點(diǎn)關(guān)于直線的對(duì)稱點(diǎn)在拋物線上.
(1)求拋物線的方程;
(2)已知,求過(guò)點(diǎn)及拋物線與軸兩個(gè)交點(diǎn)的圓的方程;
(3)已知,點(diǎn)是拋物線的焦點(diǎn),是拋物線上的動(dòng)點(diǎn),求的最小值及此時(shí)點(diǎn)的坐標(biāo);

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖,橢圓的長(zhǎng)軸長(zhǎng)為,點(diǎn)、為橢圓上的三個(gè)點(diǎn),為橢圓的右端點(diǎn),過(guò)中心,且

(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)設(shè)、是橢圓上位于直線同側(cè)的兩個(gè)動(dòng)點(diǎn)(異于、),且滿足,試討論直線與直線斜率之間的關(guān)系,并求證直線的斜率為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知定點(diǎn),過(guò)點(diǎn)F且與直線相切的動(dòng)圓圓心為點(diǎn)M,記點(diǎn)M的軌跡為曲線E.
(1)求曲線E的方程;
(2)若點(diǎn)A的坐標(biāo)為,與曲線E相交于B,C兩點(diǎn),直線AB,AC分別交直線于點(diǎn)S,T.試判斷以線段ST為直徑的圓是否恒過(guò)兩個(gè)定點(diǎn)?若是,求這兩個(gè)定點(diǎn)的坐標(biāo);若不是,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

給定橢圓.稱圓心在原點(diǎn)O,半徑為的圓是橢圓C的“準(zhǔn)圓”.若橢圓C的一個(gè)焦點(diǎn)為,其短軸上的一個(gè)端點(diǎn)到F的距離為
(1)求橢圓C的方程和其“準(zhǔn)圓”方程;
(2)點(diǎn)P是橢圓C的“準(zhǔn)圓”上的一個(gè)動(dòng)點(diǎn),過(guò)動(dòng)點(diǎn)P作直線,使得與橢圓C都只有一個(gè)交點(diǎn),試判斷是否垂直?并說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案