【題目】一元線性同余方程組問題最早可見于中國南北朝時期(公元世紀)的數(shù)學著作《孫子算經(jīng)》卷下第二十六題,叫做“物不知數(shù)”問題,原文如下:有物不知數(shù),三三數(shù)之剩二,五五數(shù)之剩三,問物幾何?即,一個整數(shù)除以三余二,除以五余三,求這個整數(shù).設(shè)這個整數(shù)為,當時, 符合條件的共有_____個.
科目:高中數(shù)學 來源: 題型:
【題目】據(jù)某氣象中心觀察和預測:發(fā)生于M地的沙塵暴一直向正南方向移動,其移動速度v(km/h)與時間t(h)的函數(shù)圖象如圖所示.過線段OC上一點T(t,0)作橫軸的垂線l,梯形OABC在直線l左側(cè)部分的面積即時間t(h)內(nèi)沙塵暴所經(jīng)過的路程s(km).
(1)當t=4時,求s的值;
(2)將s隨t變化的規(guī)律用數(shù)學關(guān)系式表示出來;
(3)若N城位于M地正南方向,且距M地650 km,試判斷這場沙塵暴是否會侵襲到N城,如果會,在沙塵暴發(fā)生后多長時間它將侵襲到N城?如果不會,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某果農(nóng)從經(jīng)過篩選(每個水果的大小最小不低于50克,最大不超過100克)的10000個水果中抽取出100個樣本進行統(tǒng)計,得到如下頻率分布表:
級別 | 大。ǹ耍 | 頻數(shù) | 頻率 |
一級果 | 5 | 0.05 | |
二級果 | |||
三級果 | 35 | ||
四級果 | 30 | ||
五級果 | 20 | ||
合計 | 100 |
請根據(jù)頻率分布表中所提供的數(shù)據(jù),解得下列問題:
(1)求的值,并完成頻率分布直方圖;
(2)若從四級果,五級果中按分層抽樣的方法抽取5個水果,并從中選出2個作為展品,求2個展品中僅有1個是四級果的概率;
(3)若將水果作分級銷售,預計銷售的價格元/個與每個水果的大小克關(guān)系是:,則預計10000個水果可收入多少元?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知A(a,0)、B(0,b)(其中ab≠0)O為坐標原點.
(1)動點P(x,y)滿足,求P點的軌跡方程;
(2)設(shè)是線段AB的n+1(n≥1)等分點,當n=2018時,求的值;
(3)若a=b=1,t∈[0,1],求的最小值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某批發(fā)市場一服裝店試銷一種成本為每件元的服裝規(guī)定試銷期間銷售單價不低于成本單價,且獲利不得高于成本的,經(jīng)試銷發(fā)現(xiàn)銷售量(件)與銷售單價(元)符合一次函數(shù),且時,;時,.
(1)求一次函數(shù)的解析式,并指出的取值范圍;
(2)若該服裝店獲得利潤為元,試寫出利潤與銷售單價之間的關(guān)系式;銷售單價定為多少元時,可獲得最大利潤最大利潤是多少元?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設(shè)函數(shù)為的導函數(shù)
(1)若曲線與曲線相切,求實數(shù)的值;
(2)設(shè)函數(shù)若為函數(shù)的極大值,且
①求的值;
②求證:對于.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖所示,已知橢圓 過點,離心率為,左、右焦點分別為、,點為直線上且不在軸上的任意一點,直線和與橢圓的交點分別為、和、,為坐標原點.
(1)求橢圓的標準方程;
(2)設(shè)直線、的斜線分別為、.
(i)證明:;
(ii)問直線上是否存在點,使得直線、、、的斜率、、、滿足?若存在,求出所有滿足條件的點的坐標;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知中心在坐標原點O的橢圓C經(jīng)過點A(),且點F(,0)為其右焦點.
(1)求橢圓C的方程;
(2)是否存在直線與橢圓C交于B,D兩點,滿足,且原點到直線l的距離為?若存在,求出直線的方程;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在平面直角坐標系中,圓,把圓上每一點的橫坐標伸長為原來的2倍,縱坐標不變,得到曲線,且傾斜角為,經(jīng)過點的直線與曲線交于兩點.
(1)當時,求曲線的普通方程與直線的參數(shù)方程;
(2)求點到兩點的距離之積的最小值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com