【題目】已知橢圓,直線
不過(guò)原點(diǎn)
且不平行于坐標(biāo)軸,
與
有兩個(gè)交點(diǎn)
,
,線段
的中點(diǎn)為
.證明:
()直線
的斜率與
的斜率的乘積為定值
.
()若
過(guò)點(diǎn)
,延長(zhǎng)線段
與
交于點(diǎn)
,當(dāng)四邊形
為平行四邊形時(shí),則直線
的斜率
.
【答案】(1)證明見(jiàn)解析;(2)證明見(jiàn)解析.
【解析】
(1)利用點(diǎn)差法即可證明;
(2)根據(jù)題意M是平行四邊形對(duì)角線的交點(diǎn),利用坐標(biāo)關(guān)系代換,構(gòu)造齊次式解,再根據(jù)(1)的結(jié)論證得結(jié)論.
(1)設(shè),直線不經(jīng)過(guò)原點(diǎn)且不與坐標(biāo)軸平行,
所以 ,
直線的斜率
,直線
的斜率
,
,
在橢圓上,
兩式相減:
,兩邊同時(shí)除以
得,所以
,
即
所以直線的斜率與
的斜率的乘積為定值
;
(2)四邊形為平行四邊形時(shí),當(dāng)且僅當(dāng)
與
互相平分,
設(shè),則
,且在橢圓上,
,即
由(1)得,
,
所以,
整理得:,又因?yàn)?/span>
所以,即
,兩邊平方得:
,
,
所以兩邊同時(shí)除以
,
,
所以,
,
所以
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】半期考試后,班長(zhǎng)小王統(tǒng)計(jì)了50名同學(xué)的數(shù)學(xué)成績(jī),繪制頻率分布直方圖如圖所示.
根據(jù)頻率分布直方圖,估計(jì)這50名同學(xué)的數(shù)學(xué)平均成績(jī);
用分層抽樣的方法從成績(jī)低于115的同學(xué)中抽取6名,再在抽取的這6名同學(xué)中任選2名,求這兩名同學(xué)數(shù)學(xué)成績(jī)均在
中的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)
.
(1)若函數(shù)在
上是增函數(shù),求正數(shù)
的取值范圍;
(2)當(dāng)時(shí),設(shè)函數(shù)
的圖象與x軸的交點(diǎn)為
,
,曲線
在
,
兩點(diǎn)處的切線斜率分別為
,
,求證:
+
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè),
分別為橢圓
:
的左右焦點(diǎn),已知橢圓
上的點(diǎn)
到焦點(diǎn)
,
的距離之和為4.
(1)求橢圓的方程;
(2)過(guò)點(diǎn)作直線交橢圓
于
,
兩點(diǎn),線段
的中點(diǎn)為
,連結(jié)
并延長(zhǎng)交橢圓于點(diǎn)
(
為坐標(biāo)原點(diǎn)),若
,
,
等比數(shù)列,求線段
的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列有關(guān)命題的說(shuō)法正確的是( )
A. ,使得
成立.
B. 命題:任意
,都有
,則
:存在
,使得
.
C. 命題“若且
,則
且
”的逆命題為真命題.
D. 若數(shù)列是等比數(shù)列,
則
是
的必要不充分條件.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】選修4-4,極坐標(biāo)與參數(shù)方程
已知在平面直角坐標(biāo)系中,
為坐標(biāo)原點(diǎn),曲線
(
為參數(shù)),在以平面直角坐標(biāo)系的原點(diǎn)為極點(diǎn),
軸的正半軸為極軸,取相同單位長(zhǎng)度的極坐標(biāo)系中,直線
的極坐標(biāo)方程為
.
(1)求曲線的普通方程和直線
的直角坐標(biāo)方程;
(2)直線與
軸的交點(diǎn)
,經(jīng)過(guò)點(diǎn)
的直線
與曲線
交于
兩點(diǎn),若
,求直線
的傾斜角.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】軍訓(xùn)時(shí),甲、乙兩名同學(xué)進(jìn)行射擊比賽,共比賽10場(chǎng),每場(chǎng)比賽各射擊四次,且用每場(chǎng)擊中環(huán)數(shù)之和作為該場(chǎng)比賽的成績(jī).?dāng)?shù)學(xué)老師將甲、乙兩名同學(xué)的10場(chǎng)比賽成績(jī)繪成如圖所示的莖葉圖,并給出下列4個(gè)結(jié)論:(1)甲的平均成績(jī)比乙的平均成績(jī)高;(2)甲的成績(jī)的極差是29;(3)乙的成績(jī)的眾數(shù)是21;(4)乙的成績(jī)的中位數(shù)是18.則這4個(gè)結(jié)論中,正確結(jié)論的個(gè)數(shù)為( )
A. 1B. 2C. 3D. 4
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】把一顆骰子投擲2次,觀察出現(xiàn)的點(diǎn)數(shù),并記第一次出現(xiàn)的點(diǎn)數(shù)為,第二次出現(xiàn)的點(diǎn)數(shù)為
,試就方程組
解答下列各題:
(1)求方程組只有一個(gè)解的概率;
(2)求方程組只有正數(shù)解的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在三棱錐中,
底面
,且
,
,
,
、
分別是
、
的中點(diǎn).
(1)求證:平面平面
;
(2)求二面角的平面角的大小.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com