【題目】已知函數(shù),其中為常數(shù).
若曲線在處的切線在兩坐標軸上的截距相等,求的值;
若對,都有,求的取值范圍.
【答案】
【解析】
(1)求出切點坐標,寫出切線方程,利用切線在兩坐標軸上的截距相等,求得a即可.
(2)對a分類討論,易判斷當或當時,在區(qū)間內是單調的,根據(jù)單調性得出結論,當時,在區(qū)間內單調遞增,在區(qū)間內單調遞減, 故,又因為,成立.而的最大值為,將最大值構造新函數(shù),通過導函數(shù)的符號判斷函數(shù)的單調性求解函數(shù)的最值,然后求解結果.
求導得,所以.
又,所以曲線在處的切線方程為.
由切線在兩坐標軸上的截距相等,得,解得即為所求.
對,,所以在區(qū)間內單調遞減.
①當時,,所以在區(qū)間內單調遞減,故,由恒成立,得,這與矛盾,故舍去.
②當時,,所以在區(qū)間內單調遞增,故,即,由恒成立得,結合得.
③當時,因為,,且在區(qū)間上單調遞減,結合零點存在定理可知,存在唯一,使得,且在區(qū)間內單調遞增,在區(qū)間內單調遞減.
故,由恒成立知,,,所以.
又的最大值為,由得,
所以.
設,則,所以在區(qū)間內單調遞增,于是,即.所以不等式恒成立.
綜上所述,所求的取值范圍是.
科目:高中數(shù)學 來源: 題型:
【題目】已知標準方程下的橢圓的焦點在軸上,且經(jīng)過點,它的一個焦點恰好與拋物線的焦點重合.橢圓的上頂點為,過點的直線交橢圓于兩點,連接、,記直線的斜率分別為.
(1)求橢圓的標準方程;
(2)求的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】學習雷鋒精神前半年內某單位餐廳的固定餐椅經(jīng)常有損壞,學習雷鋒精神時全修好;單位對學習雷鋒精神前后各半年內餐椅的損壞情況作了一個大致統(tǒng)計,具體數(shù)據(jù)如下:
損壞餐椅數(shù) | 未損壞餐椅數(shù) | 總 計 | |
學習雷鋒精神前 | 50 | 150 | 200 |
學習雷鋒精神后 | 30 | 170 | 200 |
總 計 | 80 | 320 | 400 |
(1)求:學習雷鋒精神前后餐椅損壞的百分比分別是多少?并初步判斷損毀餐椅數(shù)量與學習雷鋒精神是否有關?
(2)請說明是否有97.5%以上的把握認為損毀餐椅數(shù)量與學習雷鋒精神有關?
參考公式: ,
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓的左右焦點分別為,上頂點為,若直線的斜率為1,且與橢圓的另一個交點為, 的周長為.
(1)求橢圓的標準方程;
(2)過點的直線(直線的斜率不為1)與橢圓交于兩點,點在點的上方,若,求直線的斜率.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】選修4-4:坐標系與參數(shù)方程
以平面直角坐標系的原點為極點, 軸的正半軸為極軸,建立極坐標系,兩種坐標系中取相同的長度單位,直線的參數(shù)方程為(為參數(shù)),圓的極坐標方程為.
(1)求直線的普通方程與圓的直角坐標方程;
(2)設曲線與直線交于兩點,若點的直角坐標為,求的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】我們國家正處于老齡化社會中,老有所依也是政府的民生工程.某市共有戶籍人口400萬,其中老人(年齡60歲及以上)人數(shù)約有66萬,為了了解老人們的健康狀況,政府從老人中隨機抽取600人并委托醫(yī)療機構免費為他們進行健康評估,健康狀況共分為不能自理、不健康尚能自理、基本健康、健康四個等級,并以80歲為界限分成兩個群體進行統(tǒng)計,樣本分布被制作成如下圖表:
(1)若采用分層抽樣的方法再從樣本中的不能自理的老人中抽取8人進一步了解他們的生活狀況,則兩個群體中各應抽取多少人?
(2)估算該市80歲及以上長者占全市戶籍人口的百分比;
(3)據(jù)統(tǒng)計該市大約有五分之一的戶籍老人無固定收入,政府計劃為這部分老人每月發(fā)放生活補貼,標準如下:
①80歲及以上長者每人每月發(fā)放生活補貼200元;
②80歲以下老人每人每月發(fā)放生活補貼120元;
③不能自理的老人每人每月額外發(fā)放生活補貼100元.
利用樣本估計總體,試估計政府執(zhí)行此計劃的年度預算.(單位:億元,結果保留兩位小數(shù))
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】(本題滿分14分)如圖,在四棱錐中, 平面,底面是菱形, , 為與的交點, 為上任意一點.
(1)證明:平面平面;
(2)若平面,并且二面角的大小為,求的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知,拋物線: 與拋物線: 異于原點的交點為,且拋物線在點處的切線與軸交于點,拋物線在點處的切線與軸交于點,與軸交于點.
(1)若直線與拋物線交于點, ,且,求;
(2)證明: 的面積與四邊形的面積之比為定值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某公司銷售甲、乙兩種產(chǎn)品,根據(jù)市場調查和預測,甲產(chǎn)品的利潤(萬元)與投資額(萬元)成正比,其關系如圖所示;乙產(chǎn)品的利潤(萬元)與投資額(萬元)的算術平方根成正比,其關系式如圖所示.
(1)分別將甲、乙兩種產(chǎn)品的利潤表示為投資額的函數(shù);
(2)若該公司投資萬元資金,并全部用于甲、乙兩種產(chǎn)品的營銷,問:怎樣分配這萬元投資,才能使公司獲得最大利潤?其最大利潤為多少?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com