設(shè)曲線(xiàn)在點(diǎn)(1,1)處的切線(xiàn)與x軸的交點(diǎn)的橫坐標(biāo)為,令,則的值為                
-2 ;
因?yàn)閷?duì)y=xn+1(n∈N*)求導(dǎo)得y′=(n+1)xn,
令x=1得在點(diǎn)(1,1)處的切線(xiàn)的斜率k=n+1,
在點(diǎn)(1,1)處的切線(xiàn)方程為y-1=k(xn-1)=(n+1)(xn-1),
不妨設(shè)y=0,xn=,則所求的為-2.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本題10分)如圖一邊長(zhǎng)為48cm的正方形鐵皮,四角各截去一個(gè)大小相同的小正方形,然后折起,可以做成一個(gè)無(wú)蓋長(zhǎng)方體容器。所得容器的體積V(單位:)是關(guān)于截去的小正方形的邊長(zhǎng)x(單位:)的函數(shù)。⑴ 隨著x的變化,容積V是如何變化的?
⑵ 截去的小正方形的邊長(zhǎng)為多少時(shí),容器的容積最大?最大容積是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知,函數(shù)
(1)當(dāng)時(shí),若,求函數(shù)的單調(diào)區(qū)間;
(2)若關(guān)于的不等式在區(qū)間上有解,求的取值范圍;

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知函數(shù),= 是自然對(duì)數(shù)的底)
(1)若函數(shù)是(1,+∞)上的增函數(shù),求的取值范圍;
(2)若對(duì)任意的>0,都有,求滿(mǎn)足條件的最大整數(shù)的值;
(3)證明:,

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

設(shè)函數(shù)
(1)當(dāng)時(shí),求曲線(xiàn)在點(diǎn)處的切線(xiàn)方程;
(2)若函數(shù)在其定義域內(nèi)為增函數(shù),求實(shí)數(shù)的取值范圍;
(3)設(shè)函數(shù),若在上至少存在一點(diǎn)使成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

設(shè)函數(shù)是定義在上的奇函數(shù),且對(duì)任意都有,當(dāng) 時(shí),,則的值為(   )
A.B.C.2D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

已知處的切線(xiàn)與軸平行,若的圖象經(jīng)過(guò)四個(gè)象限,則實(shí)數(shù)的取值范圍是                     

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本小題滿(mǎn)分14分)
如圖,在半徑為圓形(O為圓心)鋁皮上截取一塊矩形材料OABC,其中點(diǎn)B在圓弧上,點(diǎn)A、C在兩半徑上,現(xiàn)將此矩形鋁皮OABC卷成一個(gè)以AB為母線(xiàn)的圓柱形罐子的側(cè)面(不計(jì)剪裁和拼接損耗),設(shè)矩形的邊長(zhǎng),圓柱的體積為.

(1)寫(xiě)出體積V關(guān)于的函數(shù)關(guān)系式;
(2)當(dāng)為何值時(shí),才能使做出的圓柱形罐子體積V最大?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

曲線(xiàn)處的切線(xiàn)方程為_(kāi)____________.

查看答案和解析>>

同步練習(xí)冊(cè)答案