(本小題滿分12分)
甲、乙兩人進行一場乒乓球比賽,根據(jù)以往比賽的勝負情況知道,每一局比賽甲勝的概率0.6,乙勝的概率為0.4,本場比賽采用三局兩勝制。
(1)求甲獲勝的概率.
(2)設(shè)ξ為本場比賽的局數(shù),求ξ的概率分布和數(shù)學期望.

 
ξ
2                       
3
P
0.52
0.48
 
 
2.48
 
解:(1)甲獲勝分為兩種情況,即甲以2:0獲勝或以2:1獲勝,
這兩種情況是互斥的.……………………2分
甲以2:0獲勝的概率為
甲以2:1獲勝的概率為
故甲獲勝的概率為………………6分
(2)ξ的取值為2,3 ……………………7分
…………………………7分

ξ
2                       

……………………10分

 
3

P
0.52
0.48
 
∴ξ的分布為                    
∴E(ξ)=2×0.52+3×0.48=2.48.………………………………12分
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源:不詳 題型:解答題

(本小題滿分12分)
某同學參加3門課程的考試,假設(shè)該同學第一門課程取得優(yōu)秀成績的概率為。第二、第三門課程取得優(yōu)秀成績的概率均為,且不同課程是否取得優(yōu)秀成績相互獨立。
(1)求該生恰有1門課程取得優(yōu)秀成績的概率;
(2)求該生取得優(yōu)秀成績的課程門數(shù)X的期望。

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本題滿分14分)某突發(fā)事件,在不采取任何預防措施的情況下發(fā)生的概率為,一旦發(fā)生,將造成某公司300萬元的損失.現(xiàn)有甲、乙兩種相互獨立的預防措施可供選擇,單獨采用甲、乙預防措施所需的費用分別為40萬元和20萬元,采用相應預防措施后此突發(fā)事件不發(fā)生的概率分別為.若預防方案允許甲、乙兩種預防措施單獨采用、同時采用或都不采用,請分別計算這幾種預防方案的總費用,并指出哪一種預防方案總費用最少.
(注:總費用 = 采取預防措施的費用+發(fā)生突發(fā)事件損失的期望值)

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本小題滿分13分)
設(shè)S是不等式x2-x-60的解集,整數(shù)m,nS。
(Ⅰ)記“使得m+n=0成立的有序數(shù)組(m,n)”為事件A,試列舉A包含的基本事件;
(Ⅱ)設(shè)=m2,求的分布列及其數(shù)學期望E

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本題12分)某種家電器每臺的銷售利潤與該電器無故障使用時間T(單位:年)有關(guān),若T≤1,則銷售利潤為0元,若1<T≤3,則銷售利潤為100元,若T>3,則銷售利潤為200元,設(shè)每臺該種電臺無故障使用時間T≤1,1<T≤3及T>3這三種情況發(fā)生的概率為為P1,P2,P3,又知P1,P2是方程25x2-15x+a=0的兩個根,且P2=P3
(1)求P1,P2,P3的值;
(2)記表示銷售兩臺這種家用電器的銷售利潤總和,求的分布列;
(3)求銷售兩臺這種家用電器的銷售利潤總和的平均值。

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

某研究機構(gòu)準備舉行一次數(shù)學新課程研討會,共邀請50名一線教師參加,使用不同版本教材的教師人數(shù)如下表所示:
版本
人教A版
人教B版
蘇教版
北師大版
人數(shù)
20
15
5
10
  (Ⅰ)從這50名教師中隨機選出2名,求2人所使用版本相同的概率;
(Ⅱ)若隨機選出2名使用人教版的教師發(fā)言,設(shè)使用人教A版的教師人數(shù)為,求隨機變量的分布列和數(shù)學期望。

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

某射擊運動員在四次射擊中分別打出了9,x,10,8環(huán)的成績,已知這組數(shù)據(jù)的平均數(shù)為9,則這組數(shù)據(jù)的方差是   ▲   

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

隨機變量的分布列如下:








 
其中成等差數(shù)列,若,則的值是         ;

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題


隨機變量的概率分布為右表所示,則的值為     。

查看答案和解析>>

同步練習冊答案