如圖所示,某市準(zhǔn)備在一個(gè)湖泊的一側(cè)修建一條直路OC;另一側(cè)修建一條觀光大道,它的前一段OD是以O(shè)為頂點(diǎn),x軸為對(duì)稱軸,開(kāi)口向右的拋物線的一部分,后一段DBC是函數(shù)y=Asin(ωx+φ)(A>0,ω>0,|φ|<),x∈[4,8]時(shí)的圖象,圖象的最高點(diǎn)為B(5,),DF⊥OC,垂足為F.
(I)求函數(shù)y=Asin(ωx+φ)的解析式;
(II)若在湖泊內(nèi)修建如圖所示的矩形水上樂(lè)園PMFE,問(wèn)點(diǎn)P落在曲線OD上何處時(shí),水上樂(lè)園的面積最大?
【答案】分析:(I)利用函數(shù)的解析式,結(jié)合函數(shù)的圖象求出A,ω,通過(guò)函數(shù)經(jīng)過(guò)B,求出φ,即可求函數(shù)y=Asin(ωx+φ)的解析式;
(II)求出D(4,4),曲線OD的方程為y2=4x,(0≤x≤4).推出矩形的面積的表達(dá)式,利用函數(shù)的導(dǎo)數(shù)求出面積的最大值,推出P的位置即可.
解答:解:(Ⅰ)對(duì)于函數(shù)y=Asin(ωx+φ)由圖象可知,A=,ω==,
將(5,),代入y=sin(x+φ)得:
|φ|<,所以φ=,所以函數(shù)的解析式為y=sin(x).
(Ⅱ)在y=sin(x)中,令x=4,得D(4,4)
從而得曲線OD的方程為y2=4x,(0≤x≤4).
設(shè)點(diǎn)P()(0≤t≤4),則矩形PMFE的面積為S=,0≤t≤4.
因?yàn)镾′=4-,由S′=0得t=,且t∈時(shí)S′>0,S遞增,
t∈時(shí)S′<0,S遞減,
所以當(dāng)t=,S最大,此時(shí)點(diǎn)P的坐標(biāo)
點(diǎn)評(píng):本題考查已知三角函數(shù)模型的應(yīng)用問(wèn)題,利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,由y=Asin(ωx+φ)的部分圖象確定其解析式,考查分析問(wèn)題解決問(wèn)題的能力.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2011•鹽城二模)如圖所示,某市準(zhǔn)備在一個(gè)湖泊的一側(cè)修建一條直路OC;另一側(cè)修建一條觀光大道,它的前一段OD是以O(shè)為頂點(diǎn),x軸為對(duì)稱軸,開(kāi)口向右的拋物線的一部分,后一段DBC是函數(shù)y=Asin(ωx+φ)(A>0,ω>0,|φ|<
π
2
),x∈[4,8]時(shí)的圖象,圖象的最高點(diǎn)為B(5,
8
3
3
),DF⊥OC,垂足為F.
(I)求函數(shù)y=Asin(ωx+φ)的解析式;
(II)若在湖泊內(nèi)修建如圖所示的矩形水上樂(lè)園PMFE,問(wèn)點(diǎn)P落在曲線OD上何處時(shí),水上樂(lè)園的面積最大?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖所示,某市準(zhǔn)備在一個(gè)湖泊的一側(cè)修建一條直路OC;另一側(cè)修建一條觀光大道,它的前一段OD是以O(shè)為頂點(diǎn),x軸為對(duì)稱軸,開(kāi)口向右的拋物線的一部分,后一段DBC是函數(shù)y=Asin(ωx+φ)(A>0,ω>0,|φ|<數(shù)學(xué)公式),x∈[4,8]時(shí)的圖象,圖象的最高點(diǎn)為B(5,數(shù)學(xué)公式),DF⊥OC,垂足為F.
(I)求函數(shù)y=Asin(ωx+φ)的解析式;
(II)若在湖泊內(nèi)修建如圖所示的矩形水上樂(lè)園PMFE,問(wèn)點(diǎn)P落在曲線OD上何處時(shí),水上樂(lè)園的面積最大?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2012-2013學(xué)年福建省泉州市安溪八中高三(上)12月月考數(shù)學(xué)試卷(理科)(解析版) 題型:解答題

如圖所示,某市準(zhǔn)備在一個(gè)湖泊的一側(cè)修建一條直路OC;另一側(cè)修建一條觀光大道,它的前一段OD是以O(shè)為頂點(diǎn),x軸為對(duì)稱軸,開(kāi)口向右的拋物線的一部分,后一段DBC是函數(shù)y=Asin(ωx+φ)(A>0,ω>0,|φ|<),x∈[4,8]時(shí)的圖象,圖象的最高點(diǎn)為B(5,),DF⊥OC,垂足為F.
(I)求函數(shù)y=Asin(ωx+φ)的解析式;
(II)若在湖泊內(nèi)修建如圖所示的矩形水上樂(lè)園PMFE,問(wèn)點(diǎn)P落在曲線OD上何處時(shí),水上樂(lè)園的面積最大?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2011-2012學(xué)年山東省泰安市高三(上)期末數(shù)學(xué)試卷(文科)(解析版) 題型:解答題

如圖所示,某市準(zhǔn)備在一個(gè)湖泊的一側(cè)修建一條直路OC;另一側(cè)修建一條觀光大道,它的前一段OD是以O(shè)為頂點(diǎn),x軸為對(duì)稱軸,開(kāi)口向右的拋物線的一部分,后一段DBC是函數(shù)y=Asin(ωx+φ)(A>0,ω>0,|φ|<),x∈[4,8]時(shí)的圖象,圖象的最高點(diǎn)為B(5,),DF⊥OC,垂足為F.
(I)求函數(shù)y=Asin(ωx+φ)的解析式;
(II)若在湖泊內(nèi)修建如圖所示的矩形水上樂(lè)園PMFE,問(wèn)點(diǎn)P落在曲線OD上何處時(shí),水上樂(lè)園的面積最大?

查看答案和解析>>

同步練習(xí)冊(cè)答案