【題目】平面直角坐標系xOy中,過橢圓M: =1(a>b>0)焦點的直線x+y﹣2 =0交M于P,Q兩點,G為PQ的中點,且OG的斜率為9.
(1)求M的方程;
(2)A、B是M的左、右頂點,C、D是M上的兩點,若AC⊥BD,求四邊形ABCD面積的最大值.
【答案】
(1)解:設(shè)P(x1,y1),Q(x2,y2),G(x0,y0),則 , , ,
由此可得 ,因為x1+x2=2x0,y1+y2=2y0, ,所以 ,
又由題意知,M的一個焦點為 ,故a2﹣b2=8.因此a2=9,b2=1,
所以M的方程為 .
(2)解:由題意可設(shè)直線AC的斜率為,所以直線AC的方程為y=k(x+1),
聯(lián)立方程組 可得,(9+k2)x2+2k2x+k2﹣9=0,所以有 ,進而可得 ,所以 ,
同理可計算出 ,
所以四邊形ABCD面積 ,
設(shè) ,令 (t≥2),所以 ,此時 ,當且僅當 時取得等號,
所以四邊形ABCD面積的最大值為 .
【解析】(1)設(shè)P(x1,y1),Q(x2,y2),G(x0,y0),利用平方差法推出 ,通過M的一個焦點,求出a,b,即可求出M的方程.(2)由題意可設(shè)直線AC的斜率為,所以直線AC的方程為y=k(x+1),聯(lián)立 利用韋達定理以及弦長公式,求解四邊形ABCD面積的表達式,通過換元法以及基本不等式求解最值即可.
科目:高中數(shù)學 來源: 題型:
【題目】下列函數(shù)中,同時滿足兩個條件“①x∈R,f( +X)+f( -X)=0;②當﹣ <x< 時,f′(x)>0”的一個函數(shù)是( )
A.f(x)=sin(2x+ )
B.f(x)=cos(2x+ )
C.f(x)=sin(2x﹣ )
D.f(x)=cos(2x﹣ )
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)=(ax﹣1)lnx+ . (Ⅰ)若a=2,求曲線y=f(x)在點(1,f(1))處的切線l的方程;
(Ⅱ)設(shè)函數(shù)g(x)=f'(x)有兩個極值點x1 , x2 , 其中x1∈(0,e),求g(x1)﹣g(x2)的最小值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】2017年3月27日,一則“清華大學要求從2017級學生開始,游泳達到一定標準才能畢業(yè)”的消息在體育界和教育界引起了巨大反響.游泳作為一項重要的求生技能和運動項目受到很多人的喜愛.其實,已有不少高校將游泳列為必修內(nèi)容.某中學為了解2017屆高三學生的性別和喜愛游泳是否有關(guān),對100名高三學生進行了問卷調(diào)查,得到如下列聯(lián)表:
喜歡游泳 | 不喜歡游泳 | 合計 | |
男生 | 10 | ||
女生 | 20 | ||
合計 |
已知在這100人中隨機抽取1人,抽到喜歡游泳的學生的概率為 .
(Ⅰ)請將上述列聯(lián)表補充完整;
(Ⅱ)判斷是否有99.9%的把握認為喜歡游泳與性別有關(guān)?
附:
p(K2≥k0) | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
k0 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知命題p:函數(shù)f(x)= 是奇函數(shù),命題q:函數(shù)g(x)=x3﹣x2在區(qū)間(0,+∞)上單調(diào)遞增.則下列命題中為真命題的是( )
A.p∨q
B.p∧q
C.¬p∧q
D.¬p∨q
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在直角坐標系xOy中,設(shè)拋物線E:y2=2px(p>0)的焦點為F,準線為直線l,點A、B在直線l上,點M為拋物線E第一象限上的點,△ABM是邊長為 的等邊三角形,直線MF的傾斜角為60°.
(1)求拋物線E的方程;
(2)如圖,直線m過點F交拋物線E于C、D兩點,Q(2,0),直線CQ、DQ分別交拋物線E于G、H兩點,設(shè)直線CD、GH的斜率分別為k1、k2 , 求 的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知AD與BC是四面體ABCD中相互垂直的棱,若AD=BC=6,且∠ABD=∠ACD=60°,則四面體ABCD的體積的最大值是( )
A.
B.
C.18
D.36
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】記U={1,2,…,100},對數(shù)列{an}(n∈N*)和U的子集T,若T=,定義ST=0;若T={t1 , t2 , …,tk},定義ST= + +…+ .例如:T={1,3,66}時,ST=a1+a3+a66 . 現(xiàn)設(shè){an}(n∈N*)是公比為3的等比數(shù)列,且當T={2,4}時,ST=30.
(1)求數(shù)列{an}的通項公式;
(2)對任意正整數(shù)k(1≤k≤100),若T{1,2,…,k},求證:ST<ak+1;
(3)設(shè)CU,DU,SC≥SD , 求證:SC+SC∩D≥2SD .
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com