已知復(fù)數(shù)z=(a2-4)+(a+2)i(a∈R)
(Ⅰ)若z為純虛數(shù),求實數(shù)a的值;
(Ⅱ)若z在復(fù)平面上對應(yīng)的點在直線x+2y+1=0上,求實數(shù)a的值.
考點:復(fù)數(shù)的代數(shù)表示法及其幾何意義
專題:數(shù)系的擴充和復(fù)數(shù)
分析:(Ⅰ)若z為純虛數(shù),實部為0,虛部不為0,求實數(shù)a的值;
(Ⅱ)求出z在復(fù)平面上對應(yīng)的點的坐標(biāo),代入直線x+2y+1=0,求實數(shù)a的值.
解答: 解:(Ⅰ)若z為純虛數(shù),則a2-4=0,且a+2≠0,解得實數(shù)a的值為2;
(Ⅱ)z在復(fù)平面上對應(yīng)的點(a2-4,a+2),
在直線x+2y+1=0上,則a2-4+2(a+2)+1=0,
解得a=-1.
點評:本題考查復(fù)數(shù)的基本概念以及復(fù)數(shù)的幾何意義,屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

-
π
2
<x<0,sinx+cosx=
1
5
,
(1)求sinxcosx的值;
(2)求sinx-cosx的值;
(3)求tanx的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,設(shè)AB,CD為⊙O的兩直徑,過B作PB垂直于AB,并與CD延長線相交于點P,過P作直線與⊙O分別交于E,F(xiàn)兩點,連接AE,AF結(jié)分別與CD交于G,H.
(Ⅰ)設(shè)EF中點為C1,求證:O,C1,B,P四點共圓;
(Ⅱ)求證:OG=OH.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)的一個焦點是F(1,0),且離心率為
1
2

(1)求橢圓C的方程;
(2)設(shè)經(jīng)過點F且斜率為1的直線交橢圓C與M、N兩點,求MN的長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知復(fù)數(shù)z=(1-i)2+1+3i.
(1)若z2+az+b=1-i,求實數(shù)a,b的值;
(2)若復(fù)數(shù)(
1
z
+mi)2在復(fù)平面上對應(yīng)的點在第一象限,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

為了解某班學(xué)生喜愛打籃球是否與性別有關(guān),對本班50人進(jìn)行了問卷調(diào)查得到了如下的列聯(lián)表:
喜愛打籃球 不喜愛打籃球 合計
男生 5
女生 10
合計 50
已知在全部50人中隨機抽取1人抽到喜愛打籃球的學(xué)生的概率為
3
5

(1)請將上面的列聯(lián)表補充完整;
(2)是否有99.5%的把握認(rèn)為喜愛打籃球與性別有關(guān)?說明你的理由;
(3)已知喜愛打籃球的10位女生中,A1,A2,A3還喜歡打羽毛球,B1,B2還喜歡打乒乓球,C1,C2還喜歡踢足球,現(xiàn)再從喜歡打羽毛球、喜歡打乒乓球、喜歡踢足球的女生中各選出1名進(jìn)行其他方面的調(diào)查,求B1和C1不全被選中的概率.
下面的臨界值表供參考:
p(K2≥k) 0.15 0.10 0.05 0.025 0.010 0.005 0.001
k 2.072 2.706 3.841 5.024 6.635 7.879 10.828
(參考公式:K2=
n(ad-bc)2
(a+b)(c+d)(a+c)(b+d)
,其中n=a+b+c+d)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知二項式(5x-
1
x
n展開式中各項系數(shù)之和是各項二項式系數(shù)之和的16倍;
(1)求n;
(2)求展開式中二項式系數(shù)最大的項;
(3)求展開式中所有x的有理項.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,已知正方體AC1棱長為2,E、F、G分別是CC1、BC和CD的中點.
(1)證明:A1G⊥面EFD;
(2)求二面角E-DF-C的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

甲、乙兩人約定在上午7:00到8:00之間到某站乘公共汽車,在這段時間內(nèi)有3班公共汽車,它們開車時刻分別為7:20、7:40、8:00,如果他們約定,見車就乘,求甲、乙同乘一班車的概率(假定甲、乙兩人到達(dá)車站的時刻是互相不關(guān)聯(lián)的,且每人在7時到8時的任何時刻到達(dá)車站是等可能的)

查看答案和解析>>

同步練習(xí)冊答案