已知某種零件的尺寸X(單位:mm)服從正態(tài)分布,其正態(tài)曲線在(0,80)上是增函數(shù),在(80,+∞)上是減函數(shù),且f(80)=.
(1)求正態(tài)分布密度函數(shù)的解析式;
(2)估計尺寸在72mm~88mm之間的零件大約占總數(shù)的百分之幾.

(1)    (2) 68.26%

解析解:(1)由于正態(tài)曲線在(0,80)上是增函數(shù),在(80,+∞)上是減函數(shù),
所以正態(tài)曲線關(guān)于直線x=80對稱,且在x=80處取得最大值.
因此得μ=80,,所以σ=8.
故正態(tài)分布密度函數(shù)的解析式是

(2)由μ=80,σ=8,得
μ-σ=80-8=72,μ+σ=80+8=88,
所以零件尺寸X在區(qū)間(72,88)內(nèi)的概率是0.6826.因此尺寸在72mm~88mm間的零件大約占總數(shù)的68.26%.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

甲、乙兩支排球隊進(jìn)行比賽,約定先勝3局者獲得比賽的勝利,比賽隨即結(jié)束,除第五局甲隊獲勝的概率是外,其余每局比賽甲隊獲勝的概率都是,假設(shè)各局比賽結(jié)果相互獨立.
(1)分別求甲隊以3∶0,3∶1,3∶2勝利的概率;
(2)若比賽結(jié)果為3∶0或3∶1,則勝利方得3分,對方得0分;若比賽結(jié)果為3∶2,則勝利方得2分、對方得1分.求乙隊得分X的分布列.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

甲乙兩個同學(xué)進(jìn)行定點投籃游戲,已知他們每一次投籃投中的概率均為,且各次投籃的結(jié)果互不影響.甲同學(xué)決定投5次,乙同學(xué)決定投中1次就停止,否則就繼續(xù)投下去,但投籃次數(shù)不超過5次.
(1)求甲同學(xué)至少有4次投中的概率;
(2)求乙同學(xué)投籃次數(shù)的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知正方形ABCD的邊長為2,E,F,G,H分別是邊AB,BC,CD,DA的中點.
(1)從C,D,E,F,G,H這六個點中,隨機(jī)選取兩個點,記這兩個點之間的距離的平方為,求概率P.
(2)在正方形ABCD內(nèi)部隨機(jī)取一點P,求滿足的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知一個矩形由三個相同的小矩形拼湊而成(如圖所示),用三種不同顏色給3個小矩形涂色,每個小矩形只涂一種顏色,求:

(1)3個矩形都涂同一顏色的概率;
(2)3個小矩形顏色都不同的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

近年空氣質(zhì)量逐步惡化,霧霾天氣現(xiàn)象出現(xiàn)增多,大氣污染危害加重.大氣污染可引起心悸.呼吸困難等心肺疾。疄榱私饽呈行姆渭膊∈欠衽c性別有關(guān),在某醫(yī)院隨機(jī)的對入院50人進(jìn)行了問卷調(diào)查得到了如下的列聯(lián)表:

 
患心肺疾病
不患心肺疾病
合計

 
5
 

10
 
 
合計
 
 
50
已知在全部50人中隨機(jī)抽取1人,抽到患心肺疾病的人的概率為
(1)請將上面的列聯(lián)表補充完整;
(2)是否有99.5%的把握認(rèn)為患心肺疾病與性別有關(guān)?說明你的理由;
(3)已知在患心肺疾病的10位女性中,有3位又患胃。F(xiàn)在從患心肺疾病的10位女性中,選出3名進(jìn)行其他方面的排查,記選出患胃病的女性人數(shù)為,求的分布列,數(shù)學(xué)期望以及方差.下面的臨界值表供參考:

0.15
0.10
0.05
0.025
0.010
0.005
0.001

2.072
2.706
3.841
5.024
6.635
7.879
10.828
(參考公式,其中

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

某地位于甲、乙兩條河流的交匯處,根據(jù)統(tǒng)計資料預(yù)測,今年汛期甲河流發(fā)生洪水的概率為0.25,乙河流發(fā)生洪水的概率為0.18(假設(shè)兩河流發(fā)生洪水與否互不影響).現(xiàn)有一臺大型設(shè)備正在該地工作,為了保護(hù)設(shè)備,施工部門提出以下三種方案:
方案1:運走設(shè)備,此時需花費4000元;
方案2:建一保護(hù)圍墻,需花費1000元,但圍墻只能抵御一個河流發(fā)生的洪水,當(dāng)兩河流同時發(fā)生洪水時,設(shè)備仍將受損,損失約56000元;
方案3:不采取措施,此時,當(dāng)兩河流都發(fā)生洪水時損失達(dá)60000元,只有一條河流發(fā)生洪水時,損失為10000元.
(1)試求方案3中損失費X(隨機(jī)變量)的分布列;
(2)試比較哪一種方案好.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

設(shè)隨機(jī)變量X的分布列為P(X=i)=,(i=1,2,3,4).
(1)求P(X<3);
(2)求P
(3)求函數(shù)F(x)=P(X<x).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù)y=x-1,令x=―4,―3,―2,-1,0,1,2,3,4,可得函數(shù)圖象上的九個點,在這九個點中隨機(jī)取出兩個點P1(x1,y1),P2(x2,y2),
(1)求P1,P2兩點在雙曲線xy=6上的概率;
(2)求P1,P2兩點不在同一雙曲線xy=k(k≠0)上的概率。

查看答案和解析>>

同步練習(xí)冊答案