18.設(shè)α:x≤-5或x≥1,β:2m-3≤x≤2m+1,若α是β的必要條件,求實(shí)數(shù)m的取值范圍m≤-3或m≥2.

分析 根據(jù)充分必要條件的定義以及集合的包含關(guān)系求出m的范圍即可.

解答 解:α:x≤-5或x≥1,β:2m-3≤x≤2m+1,
若α是β的必要條件,
則2m-3≥1或2m+1≤-5,
故m≥2或m≤-3,
故答案為:m≥2或m≤-3.

點(diǎn)評(píng) 本題考查了充分必要條件,考查集合的包含關(guān)系,是一道基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.若以雙曲線$\frac{x^2}{a^2}$-y2=1(a>0)的左、右焦點(diǎn)和點(diǎn)(1,2$\sqrt{2}$)為頂點(diǎn)的三角形為直角三角形,則此雙曲線的焦距長(zhǎng)為( 。
A.10B.8C.2$\sqrt{5}$D.6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.△ABC的外接圓的圓心為O,半徑為1,2$\overrightarrow{AO}$=$\overrightarrow{AB}$+$\overrightarrow{AC}$,且|$\overrightarrow{OA}$|=|$\overrightarrow{OB}$|,則$\overrightarrow{BA}$•$\overrightarrow{BC}$=(  )
A.1B.2C.$\sqrt{3}$D.$\frac{\sqrt{3}}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.已知直線3x+(3a-3)y=0與直線2x-y-3=0垂直,則a的值為( 。
A.1B.2C.4D.16

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.函數(shù)y=ax(a>0且a≠1)的圖象均過定點(diǎn)(0,1).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.證券公司提示:股市有風(fēng)險(xiǎn),入市需謹(jǐn)慎.小強(qiáng)買的股票A連續(xù)4個(gè)跌停(一個(gè)跌停:比前一天收市價(jià)下跌10%),則至少需要幾個(gè)漲停,才能不虧損(一個(gè)漲停:比前一天收市價(jià)上漲10%).( 。
A.3B.4C.5D.6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.化簡(jiǎn)$({a}^{3}^{\frac{1}{2}})^{\frac{1}{2}}$÷(${a}^{\frac{1}{2}}$b${\;}^{\frac{1}{4}}$)(a>0,b>0)結(jié)果為(  )
A.aB.bC.$\frac{a}$D.$\frac{a}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.計(jì)算cos$\frac{π}{8}$•cos$\frac{5π}{8}$的結(jié)果等于(  )
A.$\frac{1}{2}$B.$\frac{\sqrt{2}}{4}$C.-$\frac{1}{2}$D.-$\frac{\sqrt{2}}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.已知角α終邊上有一點(diǎn)P(x,1),且cosα=-$\frac{1}{2}$,則tanα=-$\sqrt{3}$.

查看答案和解析>>

同步練習(xí)冊(cè)答案